Trắc nghiệm Hình học Lớp 11 - Chương 2
Các tính chất thừa nhận của hình học không gian
Tính chất thừa nhận 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước.
Tính chất thừa nhận 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng cho trước.
Tính chất thừa nhận 3: Tồn tại bốn điểm không cùng nằm trên một mặt phẳng.
Tính chất thừa nhận 4: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng đó.
Tính chất thừa nhận 5: Trong mỗi mặt phẳng, các kết đã biết của hình học phẳng đều đúng.
Định lí: Nếu một đường thẳng đi qua hai điểm phân biệt của một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.
Bạn đang xem 20 trang mẫu của tài liệu "Trắc nghiệm Hình học Lớp 11 - Chương 2", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Trắc nghiệm Hình học Lớp 11 - Chương 2

QUAN HỆ SONG SONG A – LÝ THUYẾT CHUNG I - ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG 1. Mở đầu về hình học không gian Hình học không gian có các đối tượng cơ bản là điểm, đường thẳng và mặt phẳng. Quan hệ thuộc: Trong không gian: a. Với một điểm A và một đường thẳng d có thể xảy ra hai trường hợp: Điểm A thuộc đường thẳng d , kí hiệu A d . Điểm A không thuộc đường thẳng, kí hiệu A d . b. Với một điểm A và một mặt phẳng P có thể xảy ra hai trường hợp: Điểm A thuộc mặt thẳng P , kí hiệu A P . Điểm A không thuộc đường thẳng, kí hiệu A P . 2. Các tính chất thừa nhận của hình học không gian Tính chất thừa nhận 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước. Tính chất thừa nhận 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng cho trước. Tính chất thừa nhận 3: Tồn tại bốn điểm không cùng nằm trên một mặt phẳng. Tính chất thừa nhận 4: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng đó. Tính chất thừa nhận 5: Trong mỗi mặt phẳng, các kết đã biết của hình học phẳng đều đúng. Định lí: Nếu một đường thẳng đi qua hai điểm phân biệt của một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó. 3. Điều kiện xác định mặt phẳng Có bốn cách xác định trong một mặt phẳng: Cách 1: Một mặt phẳng được xác định nếu biết nó đi qua ba điểm A, B, C không thẳng hàng của mặt phẳng, kí hiệu ABC . Cách 2: Một mặt phẳng được xác định nếu biết nó đi qua một đường thẳng d và một điểm A không thuộc d, kí hiệu A,d . Cách 3: Một mặt phẳng được xác định nếu biết nó đi qua hai đường thẳnga , b cắt nhau, kí hiệu a,b . Cách 4: Một mặt phẳng được xác định nếu biết nó đi qua hai đường thẳng a, b song song, kí hiệu a,b . 4. Hình chóp và tứ diện Định nghĩa: Cho đa giác A1 A2...An và cho điểm S nằm ngoài mặt phẳng chứa đa giác đó. Nối S với các đỉnh A1, A2 , ..., An ta được n miền đa giác SA1 A2 , SA2 A3 , ..., SAn 1 An . Hình gồm n tam giác đó và đa giác A1 A2 A3...An được gọi là hình chóp S.A1 A2 A3...An . Trong đó: Điểm S gọi là đỉnh của hình chóp. S Đa giác A1 A2...An gọi là mặt đáy của hình chóp. Các đoạn thẳng A1 A2 , A2 A3 , ..., An 1 An gọi là các cạnh đáy của hình chóp. A6 Các đoạn thẳng SA1, SA2 , ..., SAn gọi là các cạnh bên của A1 hình chóp. A5 SA A , SA A , ..., SA A Các miền tam giác 1 2 2 3 n 1 n gọi là các mặt A2 (P) A4 bên của hình chóp. A3 Nếu đáy của hình chóp là một miền tam giác, tứ giác, ngũ giác, thì hình chóp tương ứng gọi là hình chóp tam giác, hình chóp tứ giác, hình chóp ngũ giác, Chú ý a. Hình chóp tam giác còn được gọi là hình tứ diện. b. Hình tứ diện có bốn mặt là những tam giác đều hay có tất cả các cạnh bằng nhau được gọi là hình tứ diện đều. II - ĐƯỜNG THẲNG SONG SONG VỚI ĐƯỜNG THẲNG 1. Định nghĩa Trong phần vị trí tương đối của hai đường thẳng trong không gian, ta biết rằng hai đường thẳng phân biệt bất kì hoặc chéo nhau hoặc song song hoặc cắt nhau. Nếu hai đường thẳng phân biệt đồng phẳng và không cắt nhau thì ta nói hai đường thẳng đó song song với nhau. Định nghĩa: Hai đường thẳng phân biệt a,b trong không gian được gọi là song song với nhau, kí hiệu a / /b nếu chúng đồng phẳng và không cắt nhau. 2. Tính chất A Định lí 1: Trong không gian cho đường thẳng d và điểm A nằm ngoài d . Lúc đó tồn tại duy nhất một đường thẳng a và A và song song với đường thẳng d. Chú ý: Định lí này cho ta thêm một cách xác định đường thẳng trong không gian: đó là đường thẳng đi qua một điểm và song song với một đường thẳng cho trước không chứa điểm đó. Kết hợp với định lí 2 dưới đây cho ta một cách để xác định giao tuyến của hai mặt phẳng. Định lí 2 ( Về giao tuyến của ba mặt phẳng): β β c γ c γ b A b a a α α Nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau. Hệ quả: Nếu hai mặt phẳng phân biệt chứa hai đường thẳng song song thì giao tuyến của chúng ( nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó. Đến đây ta có thể bổ sung một phương pháp tìm giao tuyến của hai mặt phẳng: Bước 1: Chỉ ra hai mặt phẳng , lần lượt chứa hai đường thẳng song song a,b . Bước 2: Tìm một điểm chung M của hai mặt phẳng Bước 3: Khi đó Mx / /a / /b Định lí 3: Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau. a / /b Như vậy, cho hai đường thẳng phân biệt thỏa mãn a / /b b / /c 3. Góc giữa hai đường thẳng trong không gian a) Định nghĩa Góc giữa hai đường thẳng a và b trong không là góc giữa hai đường thẳng a 'và b' cùng đi qua một điểm và lần lượt song song với a và b . b. Phương pháp tính góc giữa hai đường thẳng trong không gian Bước 1: Dựng góc - Tìm trên hình vẽ xem góc giữa hai đường thẳng có sẵn không? - Nếu không có sẵn thì ta tiến hành: + Chọn một điểm O bất kì trong không gian. + Qua O dựng đường thẳng a Pa, b Pb . Góc nhọn hay góc vuông tọc bởi a ,b chính là góc giữa a và b . Lưu ý: + Ta thường lấy điểm O thuộc một trong hai đường thẳng a và b . + Chọn O sao cho góc giữa a ,b là góc của một tam giác mà độ dài các cạnh của nó đã biết hoặc có thể tính dễ dàng Bước 2: Tính góc Dùng hệ thức lượng trong tam giác, tỉ số lượng giác hay định lí cosin, sin. Trường hợp góc giữa hai đường thẳng a và b bằng 900 ta nói a b . III – ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG 1. Vị trí tương đối của đường thẳng và mặt phẳng Cho đường thẳng a và mặt phẳng P . Căn cứ vào số điểm chung của đường thẳng và mặt phẳng ta có ba trường hợp sau: a. Đường thẳng a và mặt phẳng P không có điểm chung, tức là: a P a P P . b. Đường thẳng a và mặt phẳng P chỉ có một điểm chung, tức là: a P A a cắt P tại A. c. Đường thẳng a và mặt phẳng P có hai điểm chung, tức là: a P A, B a P . a a A A a B (P) (P) (P) a P a P P . a P A a cắt P . a P A, B a P . 2. Điều kiện để một đường thẳng song song với một mặt phẳng Định lí 1: Nếu đường thẳng a không nằm trong mặt phẳng a P và song song với một đường thẳng nào đó trong P thì a song song với P . d Tức là, a P thì nếu: (P) a P d P a P P . 3. Tính chất Định lí 2: Nếu đường thẳng a song song với mặt phẳng P (Q) thì mọi mặt phẳng Q chứa a mà cắt P thì sẽ cắt theo một a giao tuyến song song với a. a P P Tức là, nếu a P d. d a Q Q P d (P) Hệ quả 1: Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó trong mặt phẳng. Hệ quả 2: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến (nếu có) của chúng song song với đường (Q) thẳng đó. P Q d d a Tức là: P P a d P a. Q P a (P) Hệ quả 3: Nếu a và b là hai đường thẳng chéo nhau thì qua a có một và chỉ một mặt phẳng song song với b. IV - HAI MẶT PHẲNG SONG SONG 1. Vị trí tương đối của hai mặt phẳng phân biệt Cho 2 mặt phẳng P và Q . Căn cứ vào số đường thẳng chung của 2 mặt phẳng ta có ba trường hợp sau: a. Hai mặt phẳng P và Q không có đường thẳng chung, tức là: P Q P P Q . b. Hai mặt phẳng P và Q chỉ có một đường thẳng chung, tức là: P Q a P cắt Q . c. Hai mặt phẳng P và Q có 2 đường thẳng chung phân biệt, tức là: P Q a, b P Q . a (Q) (P) (Q) (P) (Q) (P) P Q P P Q . P Q a P cắt Q . P Q a, b P Q . 2. Điều kiện để hai mặt phẳng song song Định lí 1: Nếu mặt phẳng P chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng Q thì P song song Q . a b a, b P (Q) Tức là: a b I P P Q . (P) a P P , b P Q 3. Tính chất Tính chất 1: Qua một điểm nằm ngoài một mặt phẳng, có một và chỉ một mặt phẳng song song với mặt phẳng đó. Hệ quả 1: Nếu đường thẳng a song song với mặt phẳng Q thì qua a có một và chỉ một mặt phẳng P song song với Q . Hệ quả 2: Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì song song với nhau. Tính chất 2: Nếu hai mặt phẳng P và Q song song thì mặt a phẳng R đã cắt P thì phải cắt Q và các giao tuyến của (P) chúng song song. P P Q (Q) b Tức là: a P R a P b. (R) b Q R Định lí Ta – lét trong không gian: Ba mặt phẳng đôi một song song chắn trên hai cát tuyến bất kì các đoạn thẳng tương ứng tỷ a b lệ. A1 A2 P P Q P R (P) Tức là: a P A ; a Q B ; a R C B1 B2 1 1 1 (Q) b P A2 ; b Q B2 ; b P C2 C1 C2 A B A B (R) 1 1 2 2 . B1C1 B2C2 4. Hình lăng trụ và hình hộp Định nghĩa hình lăng trụ: Hình lăng trụ là một hình đa diện có hai mặt nằm trong hai mặt phẳng song song gọi là hai đáy và tất cả các cạnh không thuộc hai cạnh đáy đều song song với nhau. Trong đó: (Q) A' ▪ Các mặt khác với hai đáy gọi là các mặt bên của hình lăng A' 5 trụ. 1 A' ▪ Cạnh chung của hai mặt bên gọi là cạnh bên của hình lăng A'2 4 trụ. A' ▪ Tùy theo đa giác đáy, ta có hình lăng trụ tam giác, lăng trụ 3 tứ giác A1 A5 Từ định nghĩa của hình lăng trụ, ta lần lượt suy ra các tính chất sau: a. Các cạnh bên song song và bằng nhau. A2 A4 (P) A b. Các mặt bên và các mặt chéo là những hình bình hành. 3 c. Hai đáy là hai đa giác có các cạnh tương ứng song song và bằng nhau. Định nghĩa hình hộp: Hình lăng trụ có đáy là hình bình hành gọi là hình hộp. a. Hình hộp có tất cả các mặt bên và các mặt đáy đều là hình chữ nhật gọi là hình hộp chữ nhật. b. Hình hộp có tất cả các mặt bên và các mặt đáy đều là hình vuông gọi là hình lập phương. D1 C1 D1 C1 A1 B1 A1 B1 D C D C A B A B Chú ý: Các đường chéo của hình hộp cắt nhau tại trung điểm mỗi đường. 5. Hình chóp cụt Định nghĩa: Cho hình chóp S.A1 A2...An . Một mặt phẳng P song S song với mặt phẳng chứa đa giác đáy cắt các cạnh SA1, SA2 , ..., SAn theo thứ tự tại A1 , A2 , ..., An . Hình tạo bởi thiết diện A1 A2 ...An và đáy A1 A2...An của hình chóp cùng với các mặt A'1 A'5 A'4 bên A1 A2 A2 A1 , A2 A3 A3 A2 , ..., An A1 A1 A n gọi là một hình chóp cụt. (P) A'2 A'3 Trong đó: A ▪ Đáy của hình chóp gọi là đáy lớn của hình chóp cụt, 5 A1 còn thiết diện gọi là đáy nhỏ của hình chóp cụt. A4 A2 A3 ▪ Các mặt còn lại gọi là các mặt bên của hình chóp cụt. ▪ Cạnh chung của hai mặt bên kề nhau như A1 A1 , A2 A2 , ..., An An gọi là cạnh bên của hình chóp cụt. Tùy theo đáy là tam giác, tứ giác, ngũ giác, ta có hình chóp cụt tam giác, hình chóp cụt tứ giác, hình chụp cụt ngũ giác, Tính chất: Với hình chóp cụt, ta có các tính chất sau: 1. Hai đáy của hình chóp cụt là hai đa giác đồng dạng. 2. Các mặt bên của hình chóp cụt là các hình thang. 3. Các cạnh bên của hình chóp cụt đồng quy tại một điểm. B– BÀI TẬP ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN Câu 1: Cho hình chóp S.ABCD có đáy ABCD là một tứ giác ( AB không song song CD ). Gọi M là trung điểm của SD, N là điểm nằm trên cạnh SB sao cho SN 2NB,O là giao điểm của AC và BD . Giả sử đường thẳng d là giao tuyến của SAB và SCD . Nhận xét nào sau đây là sai: A. d cắt CD . B. d cắt MN . C. d cắt AB . D. d cắt SO . Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành BC / / AD .Mặt phẳng P di động chứa đường thẳng AB và cắt các đoạn SC, SD lần lượt tại E, F . Mặt phẳng Q di động chứa đường thẳng CD và cắt SA, SB lần lượt tại G, H.I là giao điểm của AE, BF; J là giao điểm của CG, DH . Xét các mệnh đề sau: 1 Đường thẳng EF luôn đi qua một điểm cố định. 2 Đường thẳng GH luôn đi qua một điểm cố định. 3 Đường thẳng IJ luôn đi qua một điểm cố dịnh. Có bao nhiêu mệnh đề đúng? A. 0 . B. 1. C. 2 . D. 3 . Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh MA SC . Gọi I là giao điểm của đường thẳng AM vơí mặt phẳng SBD . Khi đó tỉ số IA bằng bao nhiêu: 3 4 A. 2 . B. 3 . C. . D. . 2 3 Câu 4: Cho hình chóp S.ABCD , đáy ABCD là hình thang với AD là đáy lớn AD = 2BC, G là KB trọng tâm tam giác SCD . Mặt phẳng SAC cắt cạnh BG tại K . Khi đó, tỷ số bằng: KG 3 1 A. 2 B. C. 1 D. 2 2 Câu 5: Cho hình hộp ABCD.A'B'C'D' . Tìm điểm I trên đường chéo B'D và điểm J trên đường ID chéo AC sao cho IJ // BC' . Tính tỉ số bằng: IB' 1 1 A. B. C. 2 D. 1 3 2 Câu 6: Cho tứ diện ABCD có P,Q lần lượt là trung điểm của AB và CD . M là điểm thuộc cạnh NB AD sao cho MA = 2MD. Gọi N là giao điểm của BC với MPQ . Tỉ số bằng: NC 1 2 A. B. C. 2 D. 1 2 3 Câu 7: Cho hình chóp S.ABCD , đáy ABCD là hình thang AD // BC,AD > BC , E là điểm thuộc SF cạnh SA sao cho SE = 2EA . Mặt phẳng EBC cắt cạnh SD tại F . Khi đó, tỷ số bằng: SD 2 1 1 1 A. B. C. D. 3 3 2 4 Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M, N lần lượt là 2 điểm thuộc cạnh SB,SD sao cho SM = MB,SN = 2ND . Mặt phẳng AMN cắt SC tại P thỏa mãn SP = kSC . Số k bằng? 2 3 3 2 A. B. C. D. 5 5 2 3 Câu 9: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O . Gọi M , N, P lần lượt là SH trung điểm của AB, AD và SO . Gọi H là giao điểm của SC với MNP . Tính ? SC 1 1 3 2 A. . B. . C. . D. . 3 4 4 3 Câu 10: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M , N lần lượt là trung điểm của AD và CD . Trên đường thẳng DS lấy điểm P sao cho D là trung điểm SP . Gọi R SR là giao điểm của SB với mặt phẳng (MNP) . Tính ? SB 1 1 3 2 A. . B. . C. . D. . 3 4 4 5 Câu 11: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O . Gọi M , N lần lượt là các BM 2 NC 1 điểm nằm trên cạnh AB, AD sao cho , . Gọi P là điểm trên cạnh SD sao MA 3 BN 2 PD 1 SJ cho . J là giao điểm của SO với MNP . Tính ? PS 5 SO 10 1 3 5 A. . B. . C. . D. . 11 11 4 2 Câu 12: Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA và BC. P là điểm nằm trên AP 1 SQ cạnh AB sao cho . Gọi Q là giao điểm của SC với mặt phẳng MNP . Tính AB 3 SC 1 1 1 2 A. . B. . C. . D. . 3 6 2 3 Câu 13: Cho tứ diện đều ABCD có các cạnh bằng a . Gọi E là trung điểm AB , F là điểm thuộc cạnh BC sao cho BF 2FC,G là điểm thuộc cạnh CD sao cho CG 2GD . Tính độ dài đoạn giao tuyến của mặt phẳng EFG với mặt phẳng ACD của hình chóp ABCD theo a . 19 a 141 a 34 15 3 a 34 15 3 A. a . B. . C. . D. . 15 30 15 15 Câu 14: Cho tứ diện SABC có AB c, BC a, AC b. AD, BE,CF là các đường phân giác trong của tam giác ABC . Giao tuyến của hai mặt phẳng SBE và SCF là: b c A. SI trong đó I thuộc AD sao cho AI ID a b c B. SI trong đó I thuộc AD sao cho AI ID a a C. SI trong đó I thuộc AD sao cho AI ID b c a D. SI trong đó I thuộc AD sao cho AI ID b c Câu 15: Cho tứ diện SABC, E, F lần lượt thuộc đoạn AC, AB. Gọi K là giao điểm của BE và CF . Gọi D là giao điểm của SAK với BC . Mệnh đề nào sau đây đúng? AK BK CK AK BK CK A. 6 . B. 6 . KD KE KF KD KE KF AK BK CK AK BK CK C. 6 . D. 6 . KD KE KF KD KE KF Câu 16: Cho hình chóp S.ABCD, D, M lần lượt là trung điểm của BC, AD . Gọi E là giao điểm của MF ME SBM với AC, F là giao điểm của SCM với AB . Tính ? CM ME BM ME 1 1 A. 1. B. 2 . C. D. . 2 3 Câu 17: Cho hình bình hành ABCD , S là điểm không thuộc ABCD ,M và N lần lượt là trung điểm của đoạn AB và SC. Xác định các giao điểm I, J của AN và MN với SBD ,từ đó tìm khẳng định đúng trong các khẳng định sau: A. Ba điểm J, I, M thẳng hàng. B. Ba điểm J, I, N thẳng hàng. C. Ba điểm J, I, D thẳng hàng. D. Ba điểm J, I, B thẳng hàng. Câu 18: Cho tứ giác ABCD và S ABCD . Gọi I, J là hai điểm trên AD và SB, AD cắt BC tại O và OJ cắt SC tại M. Xác định các giao điểm K, L của IJ và DJ với SAC , từ đó tìm khẳng định đúng trong các khẳng định sau: A. Ba điểm A, K, L thẳng hàng. B. Ba điểm A, L, M thẳng hàng. C. Bốn điểm A, K, L, M thẳng hàng. D. Bốn điểm A, K, L, J thẳng hàng. Câu 19: Cho tứ diện SABC .Gọi L, M, N lần lượt là các điểm trên các cạnh SA, SB và AC sao cho LM không song song với AB, LN không song song với SC. Gọi LK giao tuyến của mp LMN và ABC . Xác định I, J lần lượt là giao điểm của BC và SC với LMN . Khẳng định nào sau đây đúng: A. Ba điểm L, I, J thẳng hàng. B. Ba điểm L, I, K thẳng hàng. C. Ba điểm M, I, J thẳng hàng. D. Ba điểm M, I, K thẳng hàng. Câu 20: Cho tứ giác ABCD và S không thuộc mặt phẳng ABCD . Gọi M, N là hai điểm trên BC và SD. Xác định I, J lần lượt là giao điểm của BN và MN với SAC . Từ đó tìm bộ 3 điểm thẳng hàng trong những điểm sau: A. Ba điểm A, I, J thẳng hàng. B. Ba điểm K, I, K thẳng hàng. C. Ba điểm M, I, J thẳng hàng. D. Ba điểm C, I, J thẳng hàng. Câu 21: Cho tứ diện ABCD . E là điểm thuộc đoạn AB sao cho EA 2EB. F,G là các điểm thuộc đường thẳng BC sao cho FC 5FB,GC 5GB. H, I là các điểm thuộc đường thẳng CD sao cho HC 5HD, ID 5IC, J thuộc tia đối của tia DA sao cho D là trung điểm của AJ . Trong các mệnh đề sau, mệnh đề nào đúng? A. Bốn điểm E, F, H, J đồng phẳng B. Bốn điểm E, F, I, J đồng phẳng. C. Bốn điểm E,G, H, I đồng phẳng. D. Bốn điểm E,G, I, J đồng phẳng. Câu 22: Cho tứ diện ABCD . E là điểm thuộc đoạn AB sao cho EA 2EB. F,G là các điểm thuộc đường thẳng BC sao cho FC 5FB,GC 5GB. H, I là các điểm thuộc đường thẳng CD sao cho HC 5HD, ID 5IC, J thuộc tia đối của tia DA sao cho D là trung điểm của AJ . Trong các mệnh đề sau, mệnh đề nào đúng? A. Bốn điểm E, F, H, J đồng phẳng B. Bốn điểm E, F, I, J đồng phẳng. C. Bốn điểm E,G, H, I đồng phẳng. D. Bốn điểm E,G, I, J đồng phẳng. Câu 23: Cho tứ diện ABCD, E,U là điểm thuộc đường thẳng AB sao cho EA 2EB, 5UA 4UB. F,G là các điểm thuộc đường thẳng BC sao cho FC 5FB, GC 2GB. H, I là các điểm thuộc đường thẳng CD sao cho HC 5HD, ID 5IC.J, K là các điểm nằm trên đường thẳng DA sao cho JA 2JD, KD 5KA . Bốn điểm nào dưới đây lập nên một tứ diện? A. E, F, H, J . B. E,G, I, K . C. U,G, H, J . D. U, F, I, K . Câu 24: Cho tứ diện ABCD và các điểm M , N, P,Q lần lượt thuộc các cạnh AB, BC,CD, DA sao cho MN không song song với AC . M , N, P,Q đồng phẳng khi : AM BN CP DQ BM CN CP DQ A. . . . 1 B. . . . 1 BM CN DP AQ AM BN DP AQ BM CN DP DQ AM BN DP AQ C. . . . 1 D. . . . 1. AM BN CP AQ BM CN CP DQ Câu 25: Cho tứ diện ABCD có M , N lần lượt là trung điểm của AB,CD và P là điểm thuộc cạnh BC ( P không là trung điểm BC ). Gọi Q là giao điểm của MNP với AD, I là giao điểm của MN với PQ . Mệnh đề nào sau đây đúng? A. SMNPQ 2SMPN . B. SMNPQ 2SMPQ . C. SMNPQ 4SMPI D. SMNPQ 4SPIN . Câu 26: Cho hình chóp SA1 A2...An với đáy là đa giác lồi A1 A2...An n 3,n ¥ . Trên tia đối của tia A1S lấy điểm B1, B2 ,...Bn là các điểm nằm trên cạnh SA2 , SAn . Thiết diện của hình chóp cắt bởi mặt phẳng B1B2 Bn là: A. Đa giác n 2 cạnh. B. Đa giác n 1 cạnh. C. Đa giác n cạnh. D. Đa giác n 1 cạnh. Câu 27: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, E là điểm thuộc cạnh bên SD sao cho SD 3SE . F là trọng tâm tam giác SAB,G là điểm thay đổi trên cạnh BC. Thiết diện cắt bởi mặt phẳng EFG là: A. Tam giác B. Tứ giác C. Ngũ giác. D. Lục giác. Câu 28: Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD, E là một điểm thuộc mặt bên SCD . F, G lần lượt là các điểm thuộc cạnh AB và SB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng EFG có thể là: A. Tam giác, tứ giác. B. Tứ giác, ngũ giác. C. Tam giác, ngũ giác. D. Ngũ giác. Câu 29: Cho hình chóp S.ABCD, E là trung điểm của SB, F thuộc SC sao cho 3SF 2SC, G là một điểm thuộc miền trong tam giác SAD . Thiết diện của hình chóp cắt bởi mặt phẳng EFG là: A. Tam giác, tứ giác. B. Tứ giác, ngũ giác. C. Tam giác, ngũ giác. D. Ngũ giác. Câu 30: Cho tứ diện ABCD có cạnh bằng a. Trên tia đối của các tia CB, DA lần lượt lấy các điểm E, F sao cho CE a, DF a . Gọi M là trung điểm của đoạn AB. Diện tích S thiết diện của tứ diện ABCD cắt bởi mặt phẳng MEF là: a2 33 a2 a2 a2 33 A. S . B. S . C. S . D. S . 18 3 6 9
File đính kèm:
trac_nghiem_hinh_hoc_lop_11_chuong_2.docx