Trắc nghiệm Hình học Lớp 11 - Chương 1 - Bài 4: Phép đồng dạng (Có đáp án)
Tính chất của phép đồng dạng.
Phép đồng dạng tỉ số k
· Biến ba điểm thẳng hàng thành ba điểm và bảo toàn thứ tự giữa ba điểm đó.
· Biến một đường thẳng thành đường thẳng thành một đường thẳng song song hoặc trùng với đường thẳng đã cho, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.
· Biến một tam giác thành tam giác đồng dạng với tam giác đã cho, biến góc thành góc bằng nó.
· Biến đường tròn có bán kính R thành đường tròn có bán kính kR
Bạn đang xem 20 trang mẫu của tài liệu "Trắc nghiệm Hình học Lớp 11 - Chương 1 - Bài 4: Phép đồng dạng (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Trắc nghiệm Hình học Lớp 11 - Chương 1 - Bài 4: Phép đồng dạng (Có đáp án)

PHÉP ĐỒNG DẠNG A – LÝ THUYẾT TÓM TẮT 1. Định nghĩa. Phép biến hình F được gọi là phép đồng dạng tỉ số k k 0 nếu với hai điểm M , N bất kì và ảnh M ', N ' của chúng ta luôn có M ' N ' k.MN . Nhận xét. Phép dời hình là phép đồng dạng tỉ số k 1. Phép vị tự tỉ số k là phép đồng dạng tỉ số k . Nếu thực hiện liên tiếp các phép đồng dạng thì được một phép đồng dạng. 2. Tính chất của phép đồng dạng. Phép đồng dạng tỉ số k Biến ba điểm thẳng hàng thành ba điểm và bảo toàn thứ tự giữa ba điểm đó. Biến một đường thẳng thành đường thẳng thành một đường thẳng song song hoặc trùng với đường thẳng đã cho, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng. Biến một tam giác thành tam giác đồng dạng với tam giác đã cho, biến góc thành góc bằng nó. Biến đường tròn có bán kính R thành đường tròn có bán kính k.R 3. Hai hình đồng dạng. Hai hình được gọi là đồng dạng nếu có một phép đồng dạng biến hình này thành hình kia. B – BÀI TẬP Câu 1: Mọi phép dời hình cũng là phép đồng dạng tỉ số A. k 1 B. k –1 C. k 0 D. k 3 Câu 2: Trong các mệnh đề sau đây mệnh đề nào sai? A. Phép dời là phép đồng dạng tỉ số k 1 B. Phép đồng dạng biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép vị tự tỉ số k là phép đồng dạng tỉ số k D. Phép đồng dạng bảo toàn độ lớn góc. Câu 3: Cho hình vẽ sau : Hình 1.88 Xét phép đồng dạng biến hình thang HICD thành hình thang LJIK. Tìm khẳng định đúng : A. Phép đối xứng trục Ñ AC và phép vị tự V B,2 B. Phép đối xứng tâm ÑI và phép vị tự V 1 C, 2 C. Phép tịnh tiến và phép vị tự TAB V I ,2 D. Phép đối xứng trục ÑBD và phép vị tự V B, 2 Câu 4: Cho ABC đều cạnh 2. Qua ba phép đồng dạng liên tiếp : Phép tịnh tiến TBC , phép quay o Q B,60 , phép vị tự V A,3 , ABC biến thành A1B1C1 . Diện tích A1B1C1 là : A. 5 2 B. 9 3 C. 9 2 D. 5 3 Câu 5: Cho hình vuông ABCD; P thuộc cạnh AB. H là chân đường vuông góc hạ từ B đến PC . Phép đồng dạng biến tam giác BHC thành tam giác PHB . Tìm ảnh của B và D A. P và Q (Q BC và BQ BP ) B. C và Q (Q BC và BQ BP ) C. H và Q D. P và C Câu 6: Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là: A. Phép vị tự. B. Phép đồng dạng, phép vị tự. C. Phép đồng dạng, phép dời hình, phép vị tự. D. Phép dời dình, phép vị tự. Câu 7: Cho tam giác ABC và A’B’C’ đồng dạng với nhau theo tỉ số k . Chọn câu sai. A. k là tỉ số hai trung tuyến tương ứng B. k là tỉ số hai đường cao tương ứng C. k là tỉ số hai góc tương ứng D. k là tỉ số hai bán kính đường tròn ngoại tiếp tương ứng Câu 8: Trong măt phẳng Oxy cho điểm M 2;4 . Phép đồng dạng có được bằng cách thực hiện liên 1 tiếp phép vị tự tâm O tỉ số k và phép đối xứng qua trục Oy sẽ biến M thành điểm nào trong 2 các điểm sau? A. 1;2 . B. 2;4 . C. 1;2 . D. 1; 2 . Câu 9: Trong măt phẳng Oxy cho đường thẳng d có phương trình 2x y 0. Phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k 2 và phép đối xứng qua trục Oy sẽ biến d thành đường thẳng nào trong các đường thẳng sau? A. 2x y 0. B. 2x y 0. C. 4x y 0. D. 2x y 2 0. Câu 10: Trong mặt phẳng Oxy cho đường tròn C có phương trình x 2 2 y 2 2 4 . Phép 1 đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k và phép quay tâm O 2 góc 900 sẽ biến C thành đường tròn nào trong các đường tròn sau? A. x – 2 2 y – 2 2 1 B. x –1 2 y –1 2 1 C. x 2 2 y –1 2 1 D. x 1 2 y –1 2 1 Câu 11: Trong mặt phẳng với hệ trục tọa độ Oxy cho A 1;2 , B –3;1 . Phép vị tự tâm I 2; –1 tỉ số k 2 biến điểm A thành A', phép đối xứng tâm B biến A' thành B ' . tọa độ điểm B ' là: A. 0;5 B. 5;0 C. –6; –3 D. –3; –6 Câu 12: Trong mặt phẳng với hệ trục tọa độ Oxy cho A –2; – 3 , B 4;1 . Phép đồng dạng tỉ số 1 k biến điểm A thành A , biến điểm B thành B . Khi đó độ dài A B là: 2 52 50 A. B. 52 C. D. 50 2 2 Câu 13: Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d : x – 2y 1 0 , Phép vị tự tâm I 0;1 tỉ số k –2 biến đường thẳng d thành đường thẳng d . phép đối xứng trục Ox biến đường thẳng d thành đường thẳng d1 . Khi đó phép đồng dạng biến đường thẳng d thành d1 có phương trình là: A. 2x – y 4 0 B. 2x y 4 0 C. x – 2y 8 0 D. x 2y 4 0 Câu 14: Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) tâm I 3;2 , bán kính R 2 . Gọi C ' là ảnh của C qua phép đồng dạng tỉ số k 3. khi đó trong các mệnh đề sau mệnh đề nào sai: A. C có phương trình x – 3 2 y – 2 2 36 B. C có phương trình x2 y2 – 2y – 35 0 C. C có phương trình x2 y2 2x – 36 0 D. C có bán kính bằng 6. Câu 15: Trong mặt phẳng với hệ trục tọa độ Oxy, cho 2 đường tròn C và C có phương trình x2 y2 – 4y – 5 0 và x2 y2 – 2x 2y –14 0 . Gọi C là ảnh của C qua phép đồng dạng tỉ số k , khi đó giá trị k là: 4 3 9 16 A. B. C. D. 3 4 16 9 Câu 16: Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai Elip E1 và E2 lần lượt có phương x2 y 2 x2 y 2 trình là: 1 và 1 . Khi đó E là ảnh của E qua phép đồng dạng tỉ số k 5 9 9 5 2 1 bằng: 5 9 A. B. C. k 1 D. k 1 9 5 Câu 17: Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn: C : x2 y2 2x 2y 2 0 , D : x2 y2 12x 16y 0 . Nếu có phép đồng dạng biến đường tròn C thành đường tròn D thì tỉ số k của phép đồng dạng đó bằng: A. 2. B. 3 C. 4 D. 5 Câu 18: Trong mặt phẳng với hệ tọa độ Oxy, cho bốn điểm A 2;1 , B 0;3 , C 1; 3 , D 2;4 . Nếu có phép đồng dạng biến đoạn thẳng AB thành đoạn thẳng CD thì tỉ số k của phép đồng dạng đó bằng: 3 5 7 A. 2 B. C. D. 2 2 2 Câu 19: Cho tam giác ABC vuông cân tại A. Nếu có phép đồng dạng biến cạnh AB thành cạnh BC thì tỉ số k của phép đồng dạng đó bằng: 2 A. 2 B. 2 C. 3 D. 2 Câu 20: Trong mặt phẳng với hệ tọa độ Oxy, cho điểm P 3; 1 . Thực hiện liên tiếp hai phép vị tự 1 V O;4 và V O; điểm P biến thành điểm P có tọa độ là: 2 A. 4; 6 B. 6; 2 C. 6 2 D. 12; 4 Câu 21: Trong mặt phẳng với hệ trục tọa độ Oxy , cho điểm I 1;1 và đường tròn C có tâm I bán kính bằng 2 . Gọi đường tròn C là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O , góc 45 và phép vị tự tâm O , tỉ số 2 . Tìm phương trình của đường tròn C ? A. x2 y 2 2 8 . B. x 2 2 y2 8 . C. x 1 2 y 1 2 8 . D. x2 y 1 2 8. Câu 22: Trong mặt phẳng Oxy cho đường tròn C : x2 y2 6x 4y 23 0,tìm phương trình đường tròn C là ảnh của đường tròn C qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v 3;5 và phép vị tự V 1 . O; 3 A. C ' : x 2 2 y 1 2 4. B. C ' : x 2 2 y 1 2 36. C. C ' : x 2 2 y 1 2 6. D. C ' : x 2 2 y 1 2 2. C –HƯỚNG DẪN GIẢI Câu 1: Mọi phép dời hình cũng là phép đồng dạng tỉ số A. k 1 B. k –1 C. k 0 D. k 3 Hướng dẫn giải: Chọn A. Theo tính chất của phép đồng dạng. Câu 2: Trong các mệnh đề sau đây mệnh đề nào sai? A. Phép dời là phép đồng dạng tỉ số k 1 B. Phép đồng dạng biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép vị tự tỉ số k là phép đồng dạng tỉ số k D. Phép đồng dạng bảo toàn độ lớn góc. Hướng dẫn giải: Chọn B. Vì phép quay là phép đồng dạng mà phép quay với góc quay k k ¢ thì không biến đường thẳng thành đường thẳng song song hoặc trùng với nó Câu 3: Cho hình vẽ sau : Hình 1.88 Xét phép đồng dạng biến hình thang HICD thành hình thang LJIK. Tìm khẳng định đúng : A. Phép đối xứng trục Ñ AC và phép vị tự V B,2 B. Phép đối xứng tâm ÑI và phép vị tự V 1 C, 2 C. Phép tịnh tiến và phép vị tự TAB V I ,2 D. Phép đối xứng trục ÑBD và phép vị tự V B, 2 Hướng dẫn giải: Chọn B. Ta có: DI : HICD KIAB; V 1 :KIAB LJIK C, 2 Do đó ta chọn đáp án B Câu 4: Cho ABC đều cạnh 2. Qua ba phép đồng dạng liên tiếp : Phép tịnh tiến TBC , phép quay o Q B,60 , phép vị tự V A,3 , ABC biến thành A1B1C1 . Diện tích A1B1C1 là : A. 5 2 B. 9 3 C. 9 2 D. 5 3 Hướng dẫn giải: Chọn B. Do phép tịnh tiến và phép quay bảo toàn khoảng cách giữa các cạnh nên phép tịnh tiến TBC , phép o quay Q B,60 , phép vị tự V A,3 , ABC biến thành A1B1C1 thì A1B1 3AB 6 62 3 Tam giác đều A B C có cạnh bằng 6 S 9 3 . 1 1 1 A1B1C1 4 Câu 5: Cho hình vuông ABCD; P thuộc cạnh AB. H là chân đường vuông góc hạ từ B đến PC . Phép đồng dạng biến tam giác BHC thành tam giác PHB . Tìm ảnh của B và D A. P và Q (Q BC và BQ BP ) B. C và Q (Q BC và BQ BP ) C. H và Q D. P và C Hướng dẫn giải: Chọn A. Câu 6: Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là: A. Phép vị tự. B. Phép đồng dạng, phép vị tự. C. Phép đồng dạng, phép dời hình, phép vị tự. D. Phép dời dình, phép vị tự. Hướng dẫn giải: Chọn A. Câu 7: Cho tam giác ABC và A’B’C’ đồng dạng với nhau theo tỉ số k . Chọn câu sai. A. k là tỉ số hai trung tuyến tương ứng B. k là tỉ số hai đường cao tương ứng C. k là tỉ số hai góc tương ứng D. k là tỉ số hai bán kính đường tròn ngoại tiếp tương ứng Hướng dẫn giải: Chọn C. Câu 8: Trong măt phẳng Oxy cho điểm M 2;4 . Phép đồng dạng có được bằng cách thực hiện liên 1 tiếp phép vị tự tâm O tỉ số k và phép đối xứng qua trục Oy sẽ biến M thành điểm nào trong 2 các điểm sau? A. 1;2 . B. 2;4 . C. 1;2 . D. 1; 2 . Hướng dẫn giải: Chọn C. Ta có: M V 1 M ;M DOy V 1 M . O, O; 2 2 1 1 x 2. 1 0 2 2 x 1 Tọa độ điểm M là: . 1 1 y 2 y 4. 1 0 2 2 x x x 1 Tọa độ điểm M là: . y y y 2 Câu 9: Trong măt phẳng Oxy cho đường thẳng d có phương trình 2x y 0. Phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k 2 và phép đối xứng qua trục Oy sẽ biến d thành đường thẳng nào trong các đường thẳng sau? A. 2x y 0. B. 2x y 0. C. 4x y 0. D. 2x y 2 0. Hướng dẫn giải: Chọn B. Tâm vị tự O thuộc đường thẳng d nên d V(O; 2) (d) . x x x x d DOy (d) có phương trình là: . y y y y Mà 2x y 0 2 x y 0 2x y 0. Câu 10: Trong mặt phẳng Oxy cho đường tròn C có phương trình x 2 2 y 2 2 4 . Phép 1 đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k và phép quay tâm O 2 góc 900 sẽ biến C thành đường tròn nào trong các đường tròn sau? A. x – 2 2 y – 2 2 1 B. x –1 2 y –1 2 1 C. x 2 2 y –1 2 1 D. x 1 2 y –1 2 1 Hướng dẫn giải: Chọn D. Đường tròn C có tâm I 2;2 bán kính R 2 1 1 QuaV O; : C C' nên (C ') có tâm I x; y và bán kính R R 1 2 2 1 x x 1 2 x 1 Mà : OI OI I 1;1 2 1 y 1 y y 2 Qua Q(O;900 ) : (C ') (C '') nên (C '') có tâm I 1;1 bán kính R R 1 ( vì góc quay 900 ngược chiều kim đồng hồ biến I 1;1 thành I 1;1 ) Vậy C : x 1 2 y –1 2 1 Giả sử đường thẳng d :ax by c 0 ( với a2 b2 0 ) có véc tơ chỉ phương v (a;b) Gọi M (x; y) d , I(x0 ; y0 ) x kx0 x x k(x x0 ) k M là ảnh của M qua V I;k khi đó IM k IM y k(y y ) y ky 0 y 0 k x kx0 y ky0 a b Do M d nên a b c 0 x y c ax0 by0 0 k k k k Nên phương trình ảnh d có véc tơ chỉ phương v k a;b do đó d và d song song hoặc trùng nhau. Chú ý: loại phép dời hình và phép đồng dạng vì phép quay cũng là phép dời hình và đồng dạng Câu 11: Trong mặt phẳng với hệ trục tọa độ Oxy cho A 1;2 , B –3;1 . Phép vị tự tâm I 2; –1 tỉ số k 2 biến điểm A thành A', phép đối xứng tâm B biến A' thành B ' . tọa độ điểm B ' là: A. 0;5 B. 5;0 C. –6; –3 D. –3; –6 Hướng dẫn giải: Chọn C. Gọi A x; y x 2 2 1 2 Ta có: V I;2 A A IA 2IA A 0;5 y 1 2 2 1 Phép đối xứng tâm B biến A thành B nên B là trung điểm A B B 6; 3 Câu 12: Trong mặt phẳng với hệ trục tọa độ Oxy cho A –2; – 3 , B 4;1 . Phép đồng dạng tỉ số 1 k biến điểm A thành A , biến điểm B thành B . Khi đó độ dài A B là: 2 52 50 A. B. 52 C. D. 50 2 2 Hướng dẫn giải: Chọn B. 1 Vì phép đồng dạng tỉ số k biến điểm A thành A , biến điểm B thành B nên 2 1 1 2 2 A B AB 4 2 1 3 52 2 2 Câu 13: Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d : x – 2y 1 0 , Phép vị tự tâm I 0;1 tỉ số k –2 biến đường thẳng d thành đường thẳng d . phép đối xứng trục Ox biến đường thẳng d thành đường thẳng d1 . Khi đó phép đồng dạng biến đường thẳng d thành d1 có phương trình là: A. 2x – y 4 0 B. 2x y 4 0 C. x – 2y 8 0 D. x 2y 4 0 Hướng dẫn giải: Chọn C. Gọi M x; y d , M x ; y là ảnh của M qua V I; 2 x x x 0 2 x 0 2 x y 3 Ta có : IM 2IM M ; y 1 2 y 1 y 3 2 2 y 2 x y 3 Vì M x; y d nên : – 2 1 0 x 2y 8 0 2 2 Vậy d :x 2 y 8 0 Câu 14: Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) tâm I 3;2 , bán kính R 2 . Gọi C ' là ảnh của C qua phép đồng dạng tỉ số k 3. khi đó trong các mệnh đề sau mệnh đề nào sai: A. C có phương trình x – 3 2 y – 2 2 36 B. C có phương trình x2 y2 – 2y – 35 0 C. C có phương trình x2 y2 2x – 36 0 D. C có bán kính bằng 6. Hướng dẫn giải: Chọn C. Ta có C là ảnh của C qua phép đồng dạng tỉ số k 3thì C có bán kính R 3R 6 Mà phương trình (C ) : x2 y2 2x – 36 0 có bán kính R 37 nên đáp án C sai Câu 15: Trong mặt phẳng với hệ trục tọa độ Oxy, cho 2 đường tròn C và C có phương trình x2 y2 – 4y – 5 0 và x2 y2 – 2x 2y –14 0 . Gọi C là ảnh của C qua phép đồng dạng tỉ số k , khi đó giá trị k là: 4 3 9 16 A. B. C. D. 3 4 16 9 Hướng dẫn giải: Chọn A. C có tâm I 0;2 bán kính R 3 C có tâm I 1; 1 bán kính R 4 4 Ta có C là ảnh của C qua phép đồng dạng tỉ số k thì 4 k.3 k 3 Câu 16: Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai Elip E1 và E2 lần lượt có phương x2 y 2 x2 y 2 trình là: 1 và 1 . Khi đó E là ảnh của E qua phép đồng dạng tỉ số k 5 9 9 5 2 1 bằng: 5 9 A. B. C. k 1 D. k 1 9 5 Hướng dẫn giải: Chọn D. E1 có trục lớn B1B2 3 E2 có trục lớn A1 A2 3 E2 là ảnh của E1 qua phép đồng dạng tỉ số k thì A1 A2 k.B1B2 3 3k k 1 Câu 17: Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn: C : x2 y2 2x 2y 2 0 , D : x2 y2 12x 16y 0 . Nếu có phép đồng dạng biến đường tròn C thành đường tròn D thì tỉ số k của phép đồng dạng đó bằng: A. 2. B. 3 C. 4 D. 5 Hướng dẫn giải: Chọn D. + Phương trình của C : x2 y2 2x 2y 2 0 có tâm I 1;1 , bán kính. R 2 + Phương trình của D : x2 y2 12x 16y 0 D có tâm J ( 6;8) , bán kính r 10 r Tỉ số của phép đồng dạng là k 5 R Câu 18: Trong mặt phẳng với hệ tọa độ Oxy, cho bốn điểm A 2;1 , B 0;3 , C 1; 3 , D 2;4 . Nếu có phép đồng dạng biến đoạn thẳng AB thành đoạn thẳng CD thì tỉ số k của phép đồng dạng đó bằng: 3 5 7 A. 2 B. C. D. 2 2 2 Hướng dẫn giải: Chọn C. Ta có:. AB 2 2, CD 5 2 CD 5 Suy ra tỉ số của phép đồng dạng là k . AB 2 Câu 19: Cho tam giác ABC vuông cân tại A. Nếu có phép đồng dạng biến cạnh AB thành cạnh BC thì tỉ số k của phép đồng dạng đó bằng: 2 A. 2 B. 2 C. 3 D. 2 Hướng dẫn giải: Chọn B. Ta có tam giác ABC vuông cân tại A : BC AB 2 BC AB 2 Ta dễ thấy tỉ số đồng dạng là k 2 . AB AB Câu 20: Trong mặt phẳng với hệ tọa độ Oxy, cho điểm P 3; 1 . Thực hiện liên tiếp hai phép vị tự 1 V O;4 và V O; điểm P biến thành điểm P có tọa độ là: 2 A. 4; 6 B. 6; 2 C. 6 2 D. 12; 4 Hướng dẫn giải: Chọn C. Giả sử ta có: Phép vị tự V O;k biến điểm M thành điểm N và phép vị tự V O;k biến điểm 1 2 N thành điểm P . Khi đó ta có:ON k1OM và OP kON . Suy ra OP k1k2 OM . Như thế P là ảnh của M qua phép vị tự V O;k1k2 Áp dụng kết quả trên phép vị tự biến điểm P thành điểm P là phép vị tự V tâm I theo tỉ số 1 k k1k2 4 2 2 Ta được: OP 2OP OP 6;2 . Vậy P 6;2 Câu 21: Trong mặt phẳng với hệ trục tọa độ Oxy , cho điểm I 1;1 và đường tròn C có tâm I bán kính bằng 2 . Gọi đường tròn C là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O , góc 45 và phép vị tự tâm O , tỉ số 2 . Tìm phương trình của đường tròn C ? A. x2 y 2 2 8 . B. x 2 2 y2 8 . C. x 1 2 y 1 2 8 . D. x2 y 1 2 8. Hướng dẫn giải: Chọn A. Đường tròn C có tâm I(1;1) , bán kính bằng 2 . Gọi J (xJ ; yJ ) là ảnh của I(1;1) qua phép quay tâm O góc quay 45. xJ 1.cos 45 1.sin 45 0 Ta có: . (công thức này không có trong SGK cơ bản, nếu sử dụng phải yJ 1.cos 45 1.sin 45 2 chứng minh cho hs) 2 Phương trình của ảnh của đường tròn qua phép quay trên là: x2 y 2 4 . Gọi K(xK ; yK ) là ảnh của J qua phép vị tự tâm O tỉ số 2 . xK 2.0 0 Ta có: . Bán kính của đường tròn qua phép vị tự này bằng 2 2 . yK 2. 2 2 Phương trình của ảnh của đường tròn qua phép vị tự trên là x2 y 2 2 8 . Câu 22: Trong mặt phẳng Oxy cho đường tròn C : x2 y2 6x 4y 23 0,tìm phương trình đường tròn C là ảnh của đường tròn C qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v 3;5 và phép vị tự V 1 . O; 3 A. C ' : x 2 2 y 1 2 4. B. C ' : x 2 2 y 1 2 36. C. C ' : x 2 2 y 1 2 6. D. C ' : x 2 2 y 1 2 2. Hướng dẫn giải: Chọn A. Đường tròn C có tâm I 3; 2 và bán kính R 9 4 23 6. . V 1 T O; I 3; 2 v I ' 6;3 3 I '' 2; 1 . v 3;5 1 R ' R 2. 3 Vậy C : x 2 2 y 1 2 4. ÔN TẬP CHƯƠNG I Câu 1: Trong một mặt phẳng, với phép biến hình f biến hình H thành hình H’. Khi đó A. Mỗi hình H’ có ít nhất một hình H mà f(H) = H’ B. Mỗi hình H’ có không quá một hình H mà f(H) = H’ C. Mỗi hình H’ có chỉ một hình H mà f(H) = H’ D. Mỗi hình H’ có không phải một hình H mà f(H) = H’ Câu 2: Trong một mặt phẳng, với phép biến hình f biến hình H thành hình H’. Khi đó A. Hình H’ có thể trùng với hình H B. Hình H’ luôn luôn trùng với hình H C. Hình H’ luôn là tập con của hình H D. Hình H luôn là tập con của hình H’ Câu 3: Trong mặt phẳng, với H là một hình ( không phải một điểm) và phép biến hình f mà f(H) = H’. Khi đó A. f(M) = M với mọi điểm M thuộc H B. f(M) ≠ M với mọi điểm M thuộc H C. f(M) ≠ M hoặc f(M) = M với điểm M thuộc H D. f(M) = M với đúng một điểm M thuộc H Câu 4: Trong mặt phẳng, A. Nếu phép biến hình f biến hình H thành hình H thì f là phép đồng nhất B. Nếu phép biến hình f biến điểm M thành điểm M thì f là phép đồng nhất C. Nếu phép biến hình f biến một số điểm M thành chính nó thì f là phép đồng nhất D. Nếu phép biến hình f biến mọi điểm M thành chính nó thì f là phép đồng nhất Câu 5: Mệnh đề nào sau đây là sai ? Trong mặt phẳng, có phép biến hình f A. Biến mọi điểm M thành một điểm M’ B. Biến mọi điểm M thuộc đường thẳng d thành một điểm M’ C. Biến một điểm M thành hai điểm M’ và M’’ phân biệt D. Biến hai điểm phân biệt M và M’ thành một điểm M’’ Câu 6: Cho hai diểm A, B phân biệt. Hãy chọn khẳng định sai trong các khẳng định sau đây: A. Có duy nhất phép đối xứng trục biến điểm A thành B. B. Có duy nhất phép đối xứng tâm biến điểm A thành B. C. Có duy nhất phép tịnh tiến biến điểm A thành B. D. Có duy nhất phép vị tự biến điểm A thành B. Câu 7: Giả sử H1 là hình gồm hai đường thẳng song song, H2 là hình bát giác đều. Khi đó: A. H1 không có trục đối xứng, không có tâm đối xứng; H2 có 8 trục đối xứng. B. H1 có vô số trục đối xứng, vô số có tâm đối xứng; H2 có 8 trục đối xứng. C. H1 chỉ có một có trục đối xứng, không có tâm đối xứng; H2 có 8 trục đối xứng. D. H1 có vô số trục đối xứng, chỉ có một tâm đối xứng; H2 có 8 trục đối xứng. Câu 8: Cho hai đường tròn tiếp xúc nhau ở A . Hãy chọn phát biểu sai trong các phát biểu sau: A. Tiếp điểm A là tâm vị tự trong của hai đường tròn. B. Tiếp điểm A là một trong hai tâm vị tự trong hoặc ngoài của hai đường tròn. C. Nếu hai đường tròn đó tiếp xúc ngoài thì tiếp điểm A là tâm vị tự trong. D. Nếu hai đường tròn đó tiếp xúc trong thì tiếp điểm A là tâm vị tự ngoài. Câu 9: Cho hai đường tròn bằng nhau O; R và O ; R . Có bao nhiêu phép vị tự biến đường tròn O; R thành O ; R ? A. Vô số. B. 1. C. 2 . D. Không có. Câu 10: Trong mặt phẳng tọa độ Oxy , cho đường thẳng d có phương trình x 2y –1 0 và vectơ v 2;m . Để phép tịnh tiến theo v biến đường thẳng d thành chính nó, ta phải chọn m là số: A. 2 . B. –1. C. 1. D. 3 .
File đính kèm:
trac_nghiem_hinh_hoc_lop_11_chuong_1_bai_4_phep_dong_dang_co.docx