Trắc nghiệm Giải tích Lớp 11 - Chương 5 - Bài 5: Tiếp tuyến (Có đáp án)
Câu 3. Phương trình tiếp tuyến của đồ thị của hàm số y=x(3-x)2 tại điểm có hoành độ x=2 là
A. y=-3x+8. B. y=-3x+6. C. y=3x-8. D. y=3x-6.
A. y=-3x+8. B. y=-3x+6. C. y=3x-8. D. y=3x-6.
Bạn đang xem 20 trang mẫu của tài liệu "Trắc nghiệm Giải tích Lớp 11 - Chương 5 - Bài 5: Tiếp tuyến (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Trắc nghiệm Giải tích Lớp 11 - Chương 5 - Bài 5: Tiếp tuyến (Có đáp án)

TIẾP TUYẾN A – LÝ THUYẾT VÀ PHƯƠNG PHÁP 1. Tiếp tuyến tại điểm M x0 ; y0 thuộc đồ thị hàm số: Cho hàm số C : y f x và điểm M x0 ; y0 C . Viết phương trình tiếp tuyến với (C) tại M. - Tính đạo hàm f ' x . Tìm hệ số góc của tiếp tuyến là f ' x0 - phương trình tiếp tuyến tại điểm M là: y f ' x x x0 y0 2. Tiếp tuyến có hệ số góc k cho trước - Gọi là tiếp tuyến cần tìm có hệ số góc k. - Giả sử M x0 ; y0 là tiếp điểm. Khi đó x0 thỏa mãn: f ' x0 k (*) . - Giải (*) tìm x0 . Suy ra y0 f x0 . - Phương trình tiếp tuyến cần tìm là: y k x x0 y0 3. Tiếp tuyến đi qua điểm Cho hàm số C : y f x và điểm A a;b . Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua A. - Gọi là đường thẳng qua A và có hệ số góc k. Khi đó : y k x a b (*) f x k x a b 1 - Để là tiếp tuyến của (C) có nghiệm. f ' x k 2 - Thay (2) vào (1) ta có phương trình ẩn x. Tìm x thay vào (2) tìm k thay vào (*) ta có phương trình tiếp tuyến cần tìm. Chú ý: 1. Hệ số góc của tiếp tuyến với (C) tại điểm M x0 ; y0 thuộc (C) là: k f ' x0 2. Cho đường thẳng d : y kd x b 1 +) / / d k kd +) d k .kd 1 k kd k kd +) ,d tan +) ,Ox k tan 1 k .kd 3. Cho hàm số bậc 3: y ax3 bx2 cx d, a 0 +) Khi a 0 : Tiếp tuyến tại tâm đối xứng của (C) có hệ số góc nhỏ nhất. +) Khi a 0 : Tiếp tuyến tại tâm đối xứng của (C) có hệ số góc lớn nhất. B – BÀI TẬP DẠNG 1: TIẾP TUYẾN TẠI ĐIỂM THUỘC ĐỒ THỊ HÀM SỐ: Câu 1. Cho hàm số y f (x) , có đồ thị C và điểm M 0 x0 ; f (x0 ) (C) . Phương trình tiếp tuyến của C tại M 0 là: A. y f (x) x x0 y0 . B. y f (x0 ) x x0 . C. y y0 f (x0 ) x x0 . D. y y0 f (x0 )x . Hướng dẫn giải: Chọn C Câu 2. Phương trình tiếp tuyến của đồ thị hàm số y x 1 2 x – 2 tại điểm có hoành độ x 2 là A. y –8x 4 . B. y 9x 18 . C. y –4x 4 . D. y 9x 18 . Hướng dẫn giải: Chọn D. Gọi M x0 ; y0 là tọa độ tiếp điểm. Ta có x0 2 y0 0 . y x 1 2 x – 2 x3 3x 2 y 3x2 3 y 2 9 . Vậy phương trình tiếp tuyến cần tìm là y 9 x 2 0 y 9x 18. Câu 3. Phương trình tiếp tuyến của đồ thị của hàm số y x 3 – x 2 tại điểm có hoành độ x 2 là A. y –3x 8 . B. y –3x 6 . C. y 3x – 8. D. y 3x – 6 . Hướng dẫn giải: Chọn A. Gọi M x0 ; y0 là tọa độ tiếp điểm. Ta có x0 2 y0 2 . y x 3 x 2 x3 6x2 9x y 3x2 12x 9 y 2 3. Vậy phương trình tiếp tuyến cần tìm là y 3 x 2 2 y 3x 8 . Câu 4. Cho đường cong C : y x2 . Phương trình tiếp tuyến của C tại điểm M –1;1 là A. y –2x 1. B. y 2x 1. C. y –2x –1. D. y 2x –1. Hướng dẫn giải: Chọn C. y x2 y 2x . y 1 2 . Phương trình tiếp tuyến cần tìm: y 2 x 1 1 y 2x 1. x2 x Câu 5. Cho hàm số y . Phương trình tiếp tuyến tại A 1; –2 là x 2 A. y –4 x –1 – 2 . B. y –5 x –1 2 . C. y –5 x –1 – 2 . D. y –3 x –1 – 2 . Hướng dẫn giải: Chọn C. x2 x x2 4x 2 y y , y 1 5 . x 2 x 2 2 Phương trình tiếp tuyến cần tìm: y 5 x 1 2 y 5x 3 . 1 Câu 6. Cho hàm số y x3 – 3x2 7x 2 . Phương trình tiếp tuyến tại A 0;2 là: 3 A. y 7x 2 . B. y 7x 2 . C. y 7x 2 .D. y 7x 2 . Hướng dẫn giải: Chọn A. Ta có : y x2 6x 7 Hệ số góc tiếp tuyến y 0 7 Phương trình tiếp tuyến tại A 0;2 : y 7 x 0 2 7x 2 . Câu 7. Gọi P là đồ thị của hàm số y 2x2 x 3 . Phương trình tiếp tuyến với P tại điểm mà P cắt trục tung là: A. y x 3 . B. y x 3 . C. y 4x 1. D. y 11x 3 . Hướng dẫn giải: Chọn A. Ta có : P cắt trục tung tại điểm M 0;3 . y 4x 1 Hệ số góc tiếp tuyến : y 0 1 Phương trình tiếp tuyến của đồ thị P tại M 0;3 là y 1 x 0 3 x 3. 3x 1 Câu 8. Đồ thị C của hàm số y cắt trục tung tại điểm A . Tiếp tuyến của C tại x 1 điểm A có phương trình là: A. y 4x 1. B. y 4x 1. C. y 5x 1. D. y 5x 1. Hướng dẫn giải: Chọn A. Ta có : điểm A 0; 1 4 y hệ số góc tiếp tuyến y 0 4 x 1 2 Phương trình tiếp tuyến của đồ thị C tại điểm A 0; 1 là : y 4 x 0 1 4x 1. 2x 4 Câu 9. Cho hàm số y có đồ thị là (H) . Phương trình tiếp tuyến tại giao điểm của (H) x 3 với trục hoành là: A. y 2x 4 . B. y 3x 1. C. y 2x 4 . D. y 2x . Hướng dẫn giải: Chọn C. 2 Giao điểm của (H) với trục hoành là A(2;0) . Ta có: y ' y '(2) 2 (x 3)2 Phương trình tiếp tuyến cần tìm là y 2(x 2) hay y 2x 4 . Câu 10. Phương trình tiếp tuyến của đồ thị hàm số f x x3 2x2 3x tại điểm có hoành độ x0 1 là: A. y 10x 4. B. y 10x 5. C. y 2x 4. D. y 2x 5. Hướng dẫn giải: Chọn A. Tập xác định: D ¡ . Đạo hàm: y 3x2 4x 3. y 1 10; y 1 6 Phương trình tiếp tuyến cần tìm là d : y 10 x 1 6 10x 4. x 1 Câu 11. Gọi H là đồ thị hàm số y . Phương trình tiếp tuyến của đồ thị H tại các x giao điểm của H với hai trục toạ độ là: y x 1 A. y x 1. B. . C. y x 1. D. y x 1 y x 1. Hướng dẫn giải: Chọn A. Tập xác định: D ¡ \ 0. 1 Đạo hàm: y . x2 H cắt trục hoành tại điểm có hoành độ là x 1 và không cắt trục tung. y 1 1 Phương trình tiếp tuyến cần tìm là d : y x 1. x 1 Câu 12. Lập phương trình tiếp tuyến của đồ thị (H ) : y tại giao điểm của (H ) và trục x 2 hoành: 1 A. y (x 1). B. y 3x. C. y x 3. D. 3 y 3(x 1). Hướng dẫn giải: Chọn A. Tập xác định: D ¡ \ 2. 3 Đạo hàm: y . x 2 2 1 (H ) cắt trục hoành tại điểm có hoành độ x 1 y 1 ; y 1 0 o 3 1 Phương trình tiếp tuyến cần tìm là d : y x 1 . 3 Câu 13. Gọi P là đồ thị hàm số y x2 x 3 . Phương trình tiếp tuyến với P tại giao điểm của P và trục tung là A. y x 3. B. y x 3. C. y x 3 . D. y 3x 1. Hướng dẫn giải: Chọn đáp án A. Tập xác định: D ¡ . Giao điểm của P và trục tung là M 0;3 . Đạo hàm: y 2x 1 hệ số góc của tiếp tuyến tại x 0 là 1. Phương trình tiếp tuyến tại M 0;3 là y x 3 . 4 Câu 14. Tiếp tuyến của đồ thị hàm số y tại điểm có hoành độ x 1có phương trình x 1 0 là: A. y x 2. B. y x 2 . C. y x 1. D. y x 3 . Hướng dẫn giải: Chọn đáp án D. Tập xác định: D ¡ \ 1. 4 Đạo hàm: y . x 1 2 Tiếp tuyến tại M 1; 2 có hệ số góc là k 1. Phương trình của tiếp tuyến là y x 3 Câu 15. Phương trình tiếp tuyến của đồ thị hàm số y x4 2x2 1 tại điểm có tung độ tiếp điểm bằng 2 là: A. y 8x 6, y 8x 6. B. y 8x 6, y 8x 6. C. y 8x 8, y 8x 8. D. y 40x 57. Hướng dẫn giải: Chọn đáp án A. Tập xác định: D ¡ . Đạo hàm: y 4x3 4x . 4 2 x 1 Tung độ tiếp điểm bằng 2 nên 2 x 2x 1 . x 1 Tại M 1;2 . Phương trình tiếp tuyến là y 8x 6 . Tại N 1;2 . Phương trình tiếp tuyến là y 8x 6 . x 2 Câu 16. Cho đồ thị (H ) : y và điểm A (H ) có tung độ y 4 . Hãy lập phương trình x 1 tiếp tuyến của (H ) tại điểm A . A. y x 2 . B. y 3x 11. C. y 3x 11. D. y 3x 10 . Hướng dẫn giải: Chọn đáp án D. Tập xác định: D ¡ \ 1. 3 Đạo hàm: y . x 1 2 x 2 Tung độ của tiếp tuyến là y 4 nên 4 x 2 . x 1 Tại M 2;4 . Phương trình tiếp tuyến là y 3x 10 . x2 3x 1 Câu 17. Tiếp tuyến của đồ thị hàm số y tại giao điểm của đồ thị hàm số với trục 2x 1 tung có phương trình là: A. y x 1. B. y x 1. C. y x . D. y x . Hướng dẫn giải: Chọn A. 2x2 2x 1 Ta có: y ' . 2x 1 2 Giao điểm M của đồ thị với trục tung : x0 0 y0 1 Hệ số góc của tiếp tuyến tại M là : k y ' 0 1. Phương trình tiếp tuyến tại điểm M là : y k x x0 y0 y x 1. x2 x 1 Câu 18. Cho đường cong (C) : y và điểm A (C) có hoành độ x 3. Lập phương x 1 trình tiếp tuyến của (C) tại điểm A . 3 5 3 5 A. y x . B. y 3x 5. C. y x . D. 4 4 4 4 1 5 y x . 4 4 Hướng dẫn giải: Chọn A. x2 2x 7 Ta có: y ' . Tại điểm A (C) có hoành độ: x0 3 y0 x 1 2 2 3 Hệ số góc của tiếp tuyến tại A là : k y ' 3 . 4 3 5 Phương trình tiếp tuyến tại điểm A là : y k x x y y x . 0 0 4 4 1 1 Câu 19. Tiếp tuyến của đồ thị hàm số y tại điểm A ;1 có phương trình là: 2x 2 A. 2x 2y 3. B. 2x 2y 1. C. 2x 2y 3. D. 2x 2y 1. Hướng dẫn giải: Chọn C. 1 1 Ta có: y ' . Hệ số góc của tiếp tuyến tại A là : k y ' 1. 2x 2x 2 Phương trình tiếp tuyến tại điểm A là : y k x x0 y0 2x 2y 3. 3 2 Câu 20. Tiếp tuyến của đồ thị hàm số f x x 2x 2 tại điểm có hoành độ x0 2 có phương trình là: A. y 4x 8 . B. y 20x 22 . C. y 20x 22 . D. y 20x 16 . Hướng dẫn giải: Chọn B. 2 Ta có: f ' x 3x 4x . Tại điểm A có hoành độ x0 2 y0 f x0 18 Hệ số góc của tiếp tuyến tại A là : k f ' 2 20 . Phương trình tiếp tuyến tại điểm A là : y k x x0 y0 y 20x 22 . 3 Câu 21. Phương trình tiếp tuyến của đồ thị (C) : y 3x 4x tại điểm có hoành độ x0 0 là: A. y 3x . B. y 0. C. y 3x 2 . D. y 12x . Hướng dẫn giải: Chọn A. 2 Ta có: y ' 3 12x . Tại điểm A (C) có hoành độ: x0 0 y0 0 Hệ số góc của tiếp tuyến tại A là : k y ' 0 3 . Phương trình tiếp tuyến tại điểm A là : y k x x0 y0 y 3x . 1 Câu 22. Cho hàm số y x3 x2 2 có đồ thị hàm số C . Phương trình tiếp tuyến của C 3 tại điểm có hoành độ là nghiệm của phương trình y" 0 là 7 7 7 7 A. y x B. y x C. y x D. y x 3 3 3 3 Hướng dẫn giải: Chọn A. Ta có y x2 2x và y 2x 2 Theo giả thiết x0 là nghiệm của phương trình y (x0 ) 0 2x 2 0 x0 1 4 7 Phương trình tiếp tuyến tại điểm A 1; là: y x 3 3 2x 1 Câu 23. Gọi M là giao điểm của đồ thị hàm số y với trục tung. Phương trình tiếp x 2 tuyến với đồ thị hàm số trên tại điểm M là: 3 1 3 1 3 1 A. y x B. y x C. y x D. 2 2 4 2 4 2 3 1 y x 2 2 Hướng dẫn giải: Chọn B. 1 Vì M là giao điểm của đồ thị với trục Oy M 0; 2 3 3 y k y (0) (x 2)2 4 3 1 Phương trình tiếp tuyến của đồ thị tại điểm M là: y x 4 2 Câu 24. Cho hàm số y x3 3x2 3x 1 có đồ thị C . Phương trình tiếp tuyến của C tại giao điểm của C với trục tung là: A. y 3x 1 B. y 8x 1 C. y 8x 1 D. y 3x 1 Hướng dẫn giải: Chọn đáp án A. Giao điểm của C với trục tung là A(0;1) y (0) 3. x4 x2 Câu 25. Hệ số góc của tiếp tuyến với đồ thị hàm số y 1 tại điểm có hoành độ 4 2 x0 1 là: A. – 2 B. 0 C. 1 D. 2 Hướng dẫn giải: Ta có f ( 1) 2. Chọn đáp án A. 1 Câu 26. Cho hàm số y x3 2x2 3x 1. Tiếp tuyến của đồ thị hàm số tại điểm có hoành 3 độ là nghiệm của phương trình y 0 có phương trình: 11 1 1 A. y x . B. y x . C. y x . D. 3 3 3 11 y x . 3 Hướng dẫn giải: Chọn D. y x2 4x 3 y 2x 4 0 x 2 . 5 Gọi M (x0 ; y0 ) là tiếp điểm M 2; 3 5 11 Phương trình tiếp tuyến cần tìm là: y y (2) x 2 y x . 3 3 3 Câu 27. Phương trình tiếp tuyến của C : y x tại điểm M 0 ( 1; 1) là: A. y 3x 2 . B. y 3x 2 . C. y 3x 3. D. y 3x 3. Hướng dẫn giải: Chọn B. + y 3x2 y ( 1) 3 + PTTT của (C) tại điểm M 0 ( 1; 1) là y 3(x 1) 1 y 3x 2 . Câu 28. Phương trình tiếp tuyến của C : y x3 tại điểm có hoành độ bằng 1 là: A. y 3x 2 . B. y 3x 2 . C. y 3x . D. y 3x 3. Hướng dẫn giải: Chọn B. + y 3x2 y (1) 3 . + x0 1 y0 y(1) 1. +PTTT của đồ thị (C) tại điểm có hoành độ bằng 1 là: y 3(x 1) 1 y 3x 2. x2 11 Câu 29. Cho hàm số y f (x) , có đồ thị C . Phương trình tiếp tuyến của C tại 8 2 M có hoành độ x0 2 là: 1 1 1 A. y (x 2) 7 . B. y (x 2) 7 . C. y (x 2) 6 . D. 2 2 2 1 y (x 2) 6 . 2 Hướng dẫn giải: Đáp án C Phương trình tiếp tuyến của C tại điểm M x0 ; y0 có phương trình là: y y0 f x0 x x0 x 1 f (x) f ( 2) ; y 6 4 2 0 1 Vậy phương trình tiếp tuyến có dạng y x 2 6 2 x2 x 1 Câu 30. Phương trình tiếp tuyến của đường cong f (x) tại điểm có hoành độ x 1 x0 1 là: 3 5 3 5 4 5 A. y x . B. y x . C. y x . D. 4 4 4 4 3 4 4 5 y x . 3 4 Hướng dẫn giải: Chọn B Phương trình tiếp tuyến của C tại điểm M x0 ; y0 có phương trình là: y y0 f x0 x x0 x2 x 1 x2 2x 3 1 f (x) 2 , f 1 ; y 1 x 1 x 1 4 2 3 5 Vậy phương trình tiếp tuyến của đồ thị hàm số tại x 1 có dạng y x . 0 4 4 Câu 31. Cho hàm số y f (x) x2 5x 4 , có đồ thị C . Tại các giao điểm của C với trục Ox , tiếp tuyến của C có phương trình: A. y 3x 3 và y 3x 12. B. y 3x 3 và y 3x 12 . C. y 3x 3 và y 3x 12. D. y 2x 3 và y 2x 12 . Hướng dẫn giải:. Đáp án A. Xét phương trình hoành độ giao điểm. 2 x 1 x 5x 4 0 x 4 f x 2x 5 TH1: x0 1; y0 0;f 1 3 PTTT có dạng : y 3x 3 TH2: x0 4; y0 0;f 4 3 PTTT có dạng : y 3x 12 Câu 32. Phương trình tiếp tuyến của đường cong y f x tan 3x tại điểm có hoành 4 độ x là: 0 6 A. y x 6 . B. y x 6 . C. y 6x 1. D. 6 6 y x 6 . 6 Hướng dẫn giải: Chọn C 3 f x ; 2 cos 3x 4 x ; y 1; f x 6 0 6 0 0 Phương trình tiếp tuyến: y 6x 1. 3 2 3 Câu 33. Cho hàm số y 2x 3x 1 có đồ thị C , tiếp tuyến với C nhận điểm M 0 ; y0 2 làm tiếp điểm có phương trình là: 9 9 27 9 23 A. y x . B. y x . C. y x . D. 2 2 4 2 4 9x 31 y . 2 4 Hướng dẫn giải: Chọn đáp án C. Tập xác định: D ¡ . 3 Ta có x y 1. 0 2 0 Đạo hàm của hàm số y 6x2 6x . 3 9 Suy ra hệ số góc của tiếp tuyến tại M 0 ; y0 là k . 2 2 9 23 Phương trình của tiếp tuyến là y x 2 4 Câu 34. Cho hàm số y x3 3x2 6x 1 (C). Viết phương trình tiếp tuyến của đồ thị (C) biết hoành độ tiếp điểm bằng 1 A. y 3x 6 B. y 3x 7 C. y 3x 4 D. y 3x 5 Hướng dẫn giải: Chọn C. Gọi M x0 ; y0 là tiếp điểm Ta có: y ' 3x2 6x 6 . Ta có: x0 1 y0 1, y '(1) 3 Phương trình tiếp tuyến là: y y '(x0 )(x x0 ) y0 3(x 1) 1 3x 4
File đính kèm:
trac_nghiem_giai_tich_lop_11_chuong_5_bai_5_tiep_tuyen_co_da.docx