Trắc nghiệm Giải tích Lớp 11 - Chương 2 - Bài 5: Xác suất (Có đáp án)

Câu 1: Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

A. Gieo đồng tiền xem nó mặt ngửa hay mặt sấp

B. Gieo 3 đồng tiền và xem có mấy đồng tiền lật ngửa

C. Chọn bất kì 1 học sinh trong lớp và xem là nam hay nữ

D. Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi.

docx 79 trang Bạch Hải 10/06/2025 180
Bạn đang xem 20 trang mẫu của tài liệu "Trắc nghiệm Giải tích Lớp 11 - Chương 2 - Bài 5: Xác suất (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Trắc nghiệm Giải tích Lớp 11 - Chương 2 - Bài 5: Xác suất (Có đáp án)

Trắc nghiệm Giải tích Lớp 11 - Chương 2 - Bài 5: Xác suất (Có đáp án)
 XÁC SUẤT
A – LÝ THUYẾT TÓM TẮT
1. Biến cố 
 Không gian mẫu : là tập các kết quả có thể xảy ra của một phép thử.
 Biến cố A: là tập các kết quả của phép thử làm xảy ra A. A  .
 Biến cố không:  Biến cố chắc chắn: 
 Biến cố đối của A: A  \ A
 Hợp hai biến cố: A  B Giao hai biến cố: A  B (hoặc A.B)
 Hai biến cố xung khắc: A  B = 
 Hai biến cố độc lập: nếu việc xảy ra biến cố này không ảnh hưởng đến việc xảy ra biến cố 
 kia.
2. Xác suất
 n(A)
 Xác suất của biến cố: P(A) = 
 n()
 0 P(A) 1; P() = 1; P() = 0
 Qui tắc cộng: Nếu A  B =  thì P(A  B) = P(A) + P(B)
 Mở rộng: A, B bất kì: P(A  B) = P(A) + P(B) – P(A.B)
 P( A ) = 1 – P(A)
 Qui tắc nhân: Nếu A, B độc lập thì P(A. B) = P(A). P(B)
B – BÀI TẬP
DẠNG 1: XÁC ĐỊNH PHÉP THỬ, KHÔNG GIAN MẪU VÀ BIẾN CỐ
Phương pháp: Để xác định không gian mẫu và biến cố ta thường sử dụng các cách sau
Cách 1: Liệt kê các phần tử của không gian mẫu và biến cố rồi chúng ta đếm.
Cách 2:Sử dụng các quy tắc đếm để xác định số phần tử của không gian mẫu và biến cố.
Câu 1: Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:
 A. Gieo đồng tiền xem nó mặt ngửa hay mặt sấp
 B. Gieo 3 đồng tiền và xem có mấy đồng tiền lật ngửa
 C. Chọn bất kì 1 học sinh trong lớp và xem là nam hay nữ
 D. Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm 
 xem có tất cả bao nhiêu viên bi.
Câu 2: Gieo 3 đồng tiền là một phép thử ngẫu nhiên có không gian mẫu là:
 A. NN, NS, SN, SS
 B. NNN, SSS, NNS, SSN, NSN, SNS.
 C. NNN, SSS, NNS, SSN, NSN, SNS, NSS, SNN .
 D. NNN, SSS, NNS, SSN, NSS, SNN .
Câu 3: Gieo một đồng tiền và một con súcsắc. Số phần tử của không gian mẫu là:
 A. 24 . B. 12 . C. 6 . D. 8 .
Câu 4: Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Số phần tử của không 
gian mẫu là:
 A. 9 . B. 18. C. 29 . D. 39 .
Câu 5: Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm 
:
 A. A 1;6 , 2;6 , 3;6 , 4;6 , 5;6  . B. A 1,6 , 2,6 , 3,6 , 4,6 , 5,6 , 6,6  .
 C. A 1,6 , 2,6 , 3,6 , 4,6 , 5,6 , 6,6 , 6,1 , 6,2 , 6,3 , 6,4 , 6,5  .
 D. A 6,1 , 6,2 , 6,3 , 6,4 , 6,5  .
Câu 6: Gieo đồng tiền hai lần. Số phần tử của biến cố để mặt ngửa xuất hiện đúng 1 lần là:
 A. 2 . B. 4 . C. 5 . D. 6 .
Câu 7: Gieo ngẫu nhiên 2 đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:
 A. 4 . B. 8 . C. 12 . D. 16.
Câu 8: Cho phép thử có không gian mẫu  1,2,3,4,5,6. Các cặp biến cố không đối nhau là:
 A. A 1 và B 2,3,4,5,6 . B. C 1,4,5 và D 2,3,6..
 C. E 1,4,6 và F 2,3 . D.  và .
Câu 9: Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để 
tổng số của 3 thẻ được chọn không vượt quá 8 . Số phần tử của biến cố A là:
 A. 2 . B. 3 . C. 4 . D. 5 .
Câu 10: Xét phép thử tung con súc sắc 6 mặt hai lần. Xác định số phần tử của không gian mẫu
 A. 36 B. 40 C. 38 D. 35
Câu 10’:Xét phép thử tung con súc sắc 6 mặt hai lần. Các biến cố:
 A:“ số chấm xuất hiện ở cả hai lần tung giống nhau”
 A. n(A) 12 B. n(A) 8 C. n(A) 16 D. n(A) 6
 B:“ Tổng số chấm xuất hiện ở hai lần tung chia hết cho 3”
 A. n(B) 14 B. n(B) 13 C. n(B) 15 D. n(B) 11
 C: “ Số chấm xuất hiện ở lần một lớn hơn số chấm xuất hiện ở lần hai”.
 A. n(C) 16 B. n(C) 17 C. n(C) 18 D. n(C) 15
Câu 11: Gieo một đồng tiền 5 lần. Xác định và tính số phần tử của
1. Không gian mẫu
 A. n() 8 B. n() 16 C. n() 32 D. n() 64
2. Các biến cố:
 A: “ Lần đầu tiên xuất hiện mặt ngửa”
 A. n(A) 16 B. n(A) 18 C. n(A) 20 D. n(A) 22
 B: “ Mặt sấp xuất hiện ít nhất một lần”
 A. n(B) 31 B. n(B) 32 C. n(B) 33 D. n(B) 34
 C: “ Số lần mặt sấp xuất hiện nhiều hơn mặt ngửa”
 A. n(C) 19 B. n(C) 18 C. n(C) 17 D. n(C) 20
Câu 12: Có 100 tấm thẻ được đánh số từ 1 đến 100. Lấy ngẫu nhiên 5 thẻ. Tính số phần tử của:
1. Không gian mẫu
 5 5 1 1
 A. n() C100 B. n() A100 C. n() C100 D. n() A100
2. Các biến cố:
 A: “ Số ghi trên các tấm thẻ được chọn là số chẵn”
 5 5 5 5
 A. n(A) A50 B. n(A) A100 C. n(A) C50 D. n(A) C100
 B: “ Có ít nhất một số ghi trên thẻ được chọn chia hết cho 3”. 5 5 5 5 5 5
 A. n(B) C100 C67 B. n(B) C100 C50 C. n(B) C100 C50 D. 
 5 5
n(B) C100 C67
Câu 13: Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 
4 viên bi. Tính số phần tử của:
1. Không gian mẫu
 A. 10626 B. 14241 C. 14284 D. 31311
2. Các biến cố:
A: “ 4 viên bi lấy ra có đúng hai viên bi màu trắng”
 A. n(A) 4245 B. n(A) 4295 C. n(A) 4095 D. n(A) 3095
B: “ 4 viên bi lấy ra có ít nhất một viên bi màu đỏ”
 A. n(B) 7366 B. n(B) 7563 C. n(B) 7566 D. n(B) 7568
C: “ 4 viên bi lấy ra có đủ 3 màu”
 A. n(C) 4859 B. n(C) 58552 C. n(C) 5859 D. n(C) 8859
Câu 14: Một xạ thủ bắn liên tục 4 phát đạn vào bia. Gọi Ak là các biến cố “ xạ thủ bắn trúng lần 
thứ k ” với k 1,2,3,4 . Hãy biểu diễn các biến cố sau qua các biến cố A1, A2 , A3, A4
A: “Lần thứ tư mới bắn trúng bia’’
 A. A A1  A2  A3  A4 B. A A1  A2  A3  A4
 C. A A1  A2  A3  A4 D. A A1  A2  A3  A4
B: “Bắn trúng bia ít nhất một lần’’
 A. B A1  A2  A3  A4 B. B A1  A2  A3  A4
 C. B A1  A2  A3  A4 D. B A1  A2  A3  A4
C: “ Chỉ bắn trúng bia hai lần’’
 A. C Ai  Aj  Ak  Am ,i, j,k,m 1,2,3,4 và đôi một khác nhau.
 B. C Ai  Aj  Ak  Am ,i, j,k,m 1,2,3,4 và đôi một khác nhau.
 C. C Ai  Aj  Ak  Am ,i, j,k,m 1,2,3,4 và đôi một khác nhau.
 D. C Ai  Aj  Ak  Am ,i, j,k,m 1,2,3,4 và đôi một khác nhau. DẠNG 2: TÌM XÁC SUẤT CỦA BIẾN CỐ
Phương pháp: 
 Soá laàn xuaát hieän cuûa bieán coá A
 Tính xác suất theo thống kê ta sử dụng công thức: P(A) .
 N
 n(A)
 Tính xác suất của biến cố theo định nghĩa cổ điển ta sử dụng công thức : P(A) .
 n()
Câu 1: Cho A là một biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng ?
 A. P(A) là số lớn hơn 0. B. P(A) 1 P A .
 C. P(A) 0 A  . D. P(A) là số nhỏ hơn 1.
Câu 2: Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
 1 1 3 1
 A. . B. . C. . D. .
 4 2 4 3
Câu 3: Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt 
sấp là:
 31 21 11 1
 A. . B. . C. . D. .
 32 32 32 32
Câu 4: Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện 
mặt sấp là
 31 21 11 1
 A. . B. . C. . D. .
 32 32 32 32
Câu 5: Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo 
đều xuất hiện mặt sấp là:
 4 2 1 6
 A. . B. . C. . D. .
 16 16 16 16
Câu 6: Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu n() là?
 A. 1. B. 2 . C. 4 . D. 8 .
Câu 7: Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A :”lần đầu tiên xuất hiện mặt 
sấp”
 1 3 7 1
 A. P(A) . B. P(A) . C. P(A) . D. P(A) .
 2 8 8 4
Câu 8: Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A :”kết quả của 3 lần gieo là 
như nhau”
 1 3 7 1
 A. P(A) . B. P(A) . C. P(A) . D. P(A) .
 2 8 8 4
Câu 9: Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A :”có đúng 2 lần xuất hiện 
mặt sấp”
 1 3 7 1
 A. P(A) . B. P(A) . C. P(A) . D. P(A) .
 2 8 8 4
Câu 10: Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A :”ít nhất một lần xuất hiện 
mặt sấp”
 1 3 7 1
 A. P(A) . B. P(A) . C. P(A) . D. P(A) .
 2 8 8 4
Câu 11: Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt 
sấp là: 4 2 1 6
 A. . B. . C. . D. .
 16 16 16 16
Câu 12: Gieo ngẫu nhiên đồng thời bốn đồng xu. Tính xác xuất để ít nhất hai đồng xu lật ngửa, ta 
có kết quả 
 10 11 11 11
 A. . B. . C. . D. .
 9 12 16 15
Câu 13: Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
 A. 0,2 . B. 0,3. C. 0,4 . D. 0,5.
Câu 14: Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
 1 5 1 1
 A. . B. . C. . D. .
 6 6 2 3
Câu 15: Gieo ngẫu nhiên hai con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả 
như nhau là:
 5 1 1
 A. . B. . C. . D. 1.
 36 6 2
Câu 16: Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở hai lần 
gieo đầu bằng số chấm ở lần gieo thứ ba:
 10 15 16 12
 A. . B. . C. . D. .
 216 216 216 216
Câu 17: Gieo 3 con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên 3 con súc 
sắc đó bằng nhau:
 5 1 1 1
 A. B. . C. . D. .
 36 9 18 36
Câu 18: Gieo 2 con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện trên hai mặt 
của 2 con súc sắc đó không vượt quá 5 là:
 2 7 8 5
 A. . B. . C. . D. .
 3 18 9 18
Câu 19: Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là
 13 11 1 1
 A. . B. . C. . D. .
 36 36 6 3
Hướng dẫn giải:
Câu 20: Gieo 3 con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên 3 con súc sắc 
đó bằng nhau:
 5 1 1 1
 A. . b) . C. . D. .
 36 9 18 36
Câu 21: Một con xúc sắc cân đối và đồng chất được gieo ba lần. Gọi P là xác suất để tổng số chấm 
xuất hiện ở hai lần gieo đầu bằng số chấm xuất hiện ở lần gieo thứ ba. Khi đó P bằng:
 10 15 16 12
 A. . B. . C. . D. .
 216 216 216 216
Câu 22: Gieo hai con súc xắc cân đối và đồng chất. Xác suất để hiệu số chấm trên mặt xuất hiện 
của hai con súc xắc bằng 2 là:
 1 1 2 5
 A. . B. . C. . D. .
 12 9 9 36
Câu 23: Gieo hai con súc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện 
của hai con súc xắc bằng 7 là:
 2 1 7 5
 A. . B. . C. . D. .
 9 6 36 36
Câu 24: Gieo một con súc xắc cân đối và đồng chất hai lần. Xác suất để ít nhất một lần xuất hiện 
mặt sáu chấm là: 12 11 6 8
 A. . B. . C. . D. .
 36 36 36 36
Câu 25: Gieo ba con súc xắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên ba con như 
nhau là:
 12 1 6 3
 A. . B. . C. . D. .
 216 216 216 216
Câu 26: Một con súc sắc đồng chất được đổ 6 lần. Xác suất để được một số lớn hơn hay bằng 5 
xuất hiện ít nhất 5 lần là 
 31 41 51 21
 A. . B. . C. . D. .
 23328 23328 23328 23328
Câu 27: Gieo ngẫu nhiên hai con súc sắc cân đối, đồng chất. Xác suất của biến cố “Tổng số chấm 
của hai con súc sắc bằng 6” là
 5 7 11 5
 A. . B. . C. . D. .
 6 36 36 36
Câu 28: Gieo một con súc sắc cân đối và đồng chất 6 lần độc lập. Tính xác xuất để không lần nào 
xuất hiện mặt có số chấm là một số chẵn ?
 1 1 1 1
 A. . B. . C. . D. .
 36 64 32 72
Câu 29: Gieo một con súc sắc cân đối và đồng chất hai lần. Xác suất để tổng số chấm xuất hiện là 
một số chia hết cho 5 là:
 6 4 8 7
 A. . B. . C. . D. .
 36 36 36 36
Câu 30: Gieo hai con súc sắc. Xác suất để tổng hai mặt bằng 11 là.
 1 1 1 2
 A. . B. . C. . D. .
 18 6 8 15
Câu 31: Gieo hai con súc sắc. Xác suất để tổng hai mặt bằng 7 là.
 1 7 1 1
 A. . B. . C. . D. .
 2 12 6 3
Câu 32: Gieo hai con súc sắc. Xác suất để tổng hai mặt chia hết cho 3 là.
 13 11 1 2
 A. . B. . C. . D. . 
 36 36 3 3
Câu 33: Gieo ba con súc sắc. Xác suất để được nhiều nhất hai mặt 5 là.
 5 1 1 215
 A. . B. . C. . D. .
 72 216 72 216
Câu 34: Gieo một con súc sắc có sáu mặt các mặt 1,2,3,4 được sơn đỏ, mặt 5,6 sơn xanh. Gọi A 
là biến cố được số lẻ, B là biến cố được nút đỏ (mặt sơn màu đỏ). Xác suất của A  B là:
 1 1 3 2
 A. . B. . C. . D. .
 4 3 4 3
Câu 35: Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:
 13 11 1 1
 A. . B. . C. . D. .
 36 36 3 6
Câu 36: Gieo ba con súc sắc. Xác suất để nhiều nhất hai mặt 5 là:
 5 1 1 215
 A. . B. C. . D. .
 72 216 72 216
Câu 37: Gieo một con súc sắc 3 lần. Xác suất để được mặt số hai xuất hiện cả 3 lần là:
 1 1 1 1
 A. . B. . C. . D. .
 172 18 20 216
Câu 38: Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là: 1 1 12 3
 A. . B. . C. . D. .
 13 4 13 4
Câu 39: Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá át (A) là:
 2 1 1 3
 A. . B. . C. . D. .
 13 169 13 4
Câu 40: Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá ách (A) hay lá rô là:
 1 2 4 17
 A. . B. . C. . D. .
 52 13 13 52
Câu 41: Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bồi (J) màu đỏ hay lá 5 là:
 1 3 3 1
 A. . B. . C. . D. .
 13 26 13 238
Câu 42: Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được một lá rô hay một lá hình người (lá 
bồi, đầm, già) là:
 17 11 3 3
 A. . B. . C. . D. .
 52 26 13 13
Câu 43: Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá bích là 
 1 1 12 3
 A. . B. . C. . D. .
 13 4 13 4
Câu 44: Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá 10 hay lá át là 
 2 1 4 3
 A. . B. . C. . D. .
 13 169 13 4
Câu 45: Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá át hay lá rô là 
 1 2 4 17
 A. . B. . C. . D. .
 52 13 13 52
Câu 46: Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá át (A) hay lá già (K) hay lá đầm 
(Q) là 
 1 1 1 3
 A. . B. . C. . D. .
 2197 64 13 13
Câu 47: Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá bồi (J) màu đỏ hay lá 5là
 1 3 3 1
 A. . B. . C. . D. .
 13 26 13 238
Câu 48: Từ các chữ số 1, 2 , 4 , 6, 8 , 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên 
tố là:
 1 1 1 1
 A. . B. . C. . D. .
 2 3 4 6
 1 1 1
Câu 49: Cho hai biến cố A và B có P(A) , P(B) , P(A B) . Ta kết luận hai biến cố 
 3 4 2
A và B là:
 A. Độc lập. B. Không xung khắc. C. Xung khắc. D. Không rõ.
Câu 50: Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
 1 1 9 4
 A. . B. . C. . D. .
 5 10 10 5
Câu 51: Một hộp đựng 4 bi xanh và 6 bi đỏ lần lượt rút 2 viên bi. Xác suất để rút được một bi 
xanh và 1 bi đỏ là:
 2 6 8 4
 A. . B. . C. . D. .
 15 25 25 15
Câu 52: Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 
quả cầu. Xác suất để được 3 quả cầu khác màu là: 3 3 3 3
 A. . B. . C. . D. .
 5 7 11 14
Câu 53: Một bình đựng 4 quả cầu xanh và 6 quả cầu trắng. Chọn ngẫu nhiên 3 quả cầu. Xác suất 
để được 3 quả cầu toàn màu xanh là:
 1 1 1 3
 A. . B. . C. . D. .
 20 30 15 10
Câu 54: Một bình đựng 4 quả cầu xanh và 6 quả cầu trắng. Chọn ngẫu nhiên 4 quả cầu. Xác suất 
để được 2 quả cầu xanh và 2 quả cầu trắng là:
 1 3 1 4
 A. . B. . C. . D. .
 20 7 7 7
Câu 55: Một hộp đựng 4bi xanh và 6bi đỏ lần lượt rút 2viên bi. Xác suất để rút được một bi xanh 
và một bi đỏ là
 4 6 8 8
 A. . B. . C. . D. .
 15 25 25 15
Câu 56: Một bình đựng 5 quả cầu xanh và 4quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả 
cầu. Xác suất để được 3 quả cầu khác màu là
 3 3 3 3
 A. . B. . C. . D. .
 5 7 11 14
Câu 57: Một bình đựng 4quả cầu xanh và 6quả cầu trắng. Chọn ngẫu nhiên 3 quả cầu. Xác suất 
để được 3 quả cầu toàn màu xanh là
 1 1 1 3
 A. . B. . C. . D. .
 20 30 15 10
Câu 58: Một bình đựng 4quả cầu xanh và 6quả cầu trắng. Chọn ngẫu nhiên 4quả cầu. Xác suất 
để được 2quả cầu xanh và 2quả cầu trắng là
 1 3 1 4
 A. . B. . C. . D. .
 20 7 7 7
Câu 59: Một hộp chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Lấy ngẫu nhiên từ hộp ra 
4 viên bi. Xác suất để 4 viên bi được chọn có đủ ba màu và số bi đỏ nhiều nhất là
 1 2 1 1 3 2
 C4C5 C6 C4C5 C6
 A. P 4 . B. P 2 .
 C15 C15
 1 2 1 1 2 1
 C4C5 C6 C4C5 C6
 C. P 2 . D. P 2 .
 C15 C15
Câu 60: Một hộp có 5 bi đen, 4 bi trắng. Chọn ngẫu nhiên 2 bi. Xác suất 2 bi được chọn có đủ hai 
màu là
 5 5 2 1
 A. . B. . C. . D. .
 324 9 9 18
Câu 61: Một bình chứa 16 viên bi với 7 viên bi trắng, 6 viên bi đen và 3 viên bi đỏ. Lấy ngẫu nhiên 
3 viên bi. Tính xác suất lấy được cả 3 viên bi đỏ.
 1 9 1 143
 A. . B. . C. . D. .
 560 40 28 280
Câu 62: Một bình chứa 16 viên bi với 7 viên bi trắng, 6 viên bi đen và 3 viên bi đỏ. Lấy ngẫu nhiên 
3 viên bi. Tính xác suất lấy được cả 3 viên bi không đỏ.
 1 9 1 143
 A. . B. . C. . D. .
 560 40 28 280
Câu 63: Một bình chứa 16 viên bi với 7 viên bi trắng, 6 viên bi đen và 3 viên bi đỏ. Lấy ngẫu nhiên 
3 viên bi. Tính xác suất lấy được cả 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.
 1 9 1 143
 A. . B. . C. . D. .
 560 40 28 280 Câu 64: Từ một hộp chứa ba quả cầu trắng và hai quả cầu đen lấy ngẫu nhiên hai quả. Xác suất để 
lấy được cả hai quả trắng là: 
 9 12 10 6
 A. . B. . C. . D. .
 30 30 30 30
Câu 65: Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi chỉ khác nhau về màu sắc). 
Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố 
“Lấy lần thứ hai được một viên bi xanh”, ta được kết quả 
 5 5 5 4
 A. . B. . C. . D. .
 8 9 7 7
Câu 66: Một hộp có 5 viên bi đỏ và 9 viên bi xanh. Chọn ngẫu nhiên 2 viên bi. Xác suất để chọn 
được 2 viên bi khác màu là:
 14 45 46 15
 A. . B. . C. . D. .
 45 91 91 22
Câu 67: Một hộp chứa ba quả cầu trắng và hai quả cầu đen. Lấy ngẫu nhiên đồng thời hai quả. 
Xác suất để lấy được cả hai quả trắng là:
 2 3 4 5
 A. . B. . C. . D. .
 10 10 10 10
Câu 68: Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen. Lấy ngẫu nhiên đồng thời bốn quả. 
Tính xác suất sao cho có ít nhất một quả màu trắng?
 1 1 209 8
 A. . B. . C. . D. .
 21 210 210 105
Câu 69: Có hai hộp đựng bi. Hộp I có 9 viên bi được đánh số 1, 2, , 9. Lấy ngẫu nhiên mỗi 
 3
hộp một viên bi. Biết rằng xác suất để lấy được viên bi mang số chẵn ở hộp II là . Xác suất để 
 10
lấy được cả hai viên bi mang số chẵn là:
 2 1 4 7
 A. . B. . C. . D. .
 15 15 15 15
Câu 70: Một hộp chứa 5 viên bi màu trắng, 15 viên bi màu xanh và 35 viên bi màu đỏ. Lấy 
ngẫu nhiên từ hộp ra 7 viên bi. Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu 
đỏ là:
 7 7 7
 1 C55 C20 C35 1 6
 A. C35. B. 7 . C. 7 . D. C35.C20.
 C55 C55
Câu 71: Trong một túi có 5 viên bi xanh và 6 viên bi đỏ; lấy ngẫu nhiên từ đó ra 2 viên bi. Khi đó 
xác suất để lấy được ít nhất một viên bi xanh là:
 8 2 3 9
 A. . B. . C. . D. .
 11 11 11 11
Câu 72: Một bình đựng 12 quả cầu được đánh số từ 1 đến 12. Chọn ngẫu nhiên bốn quả cầu. Xác 
suất để bốn quả cầu được chọn có số đều không vượt quá 8.
 56 7 14 28
 A. . B. . C. . D. .
 99 99 99 99
Câu 73: Một bình chứa 16 viên bi với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu 
nhiên 3 viên bi. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.
 1 1 9 143
 A. . B. . C. . D. .
 560 16 40 240
Câu 74: Có 3 viên bi đỏ và 7 viên bi xanh, lấy ngẫu nhiên 4viên bi. Tính xác suất để lấy được 
2bi đỏ và 2bi xanh ?
 12 126 21 4
 A. . B. . C. . D. .
 35 7920 70 35 Câu 75: Một bình đựng 8 viên bi xanh và 4 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Xác suất để có 
được ít nhất hai viên bi xanh là bao nhiêu?
 28 14 41 42
 A. . B. . C. . D. .
 55 55 55 55
Câu 76: Bạn Tít có một hộp bi gồm 2 viên đỏ và 8 viên trắng. Bạn Mít cũng có một hộp bi giống 
như của bạn Tít. Từ hộp của mình, mỗi bạn lấy ra ngẫu nhiên 3 viên bi. Tính xác suất để Tít và Mít 
lấy được số bi đỏ như nhau
 11 1 7 12
 A. . B. . C. . D. .
 25 120 15 25
Câu 77: Một hộp có 5 viên bi đỏ và 9 viên bi xanh. Chọn ngẫu nhiên 2 viên bi. Xác suất để chọn 
được 2 viên bi khác màu là:
 14 45 46 15
 A. . B. . C. . D. .
 45 91 91 22
Câu 78: Một hộp chứa 5 bi xanh và 10 bi đỏ. Lấy ngẫu nhiên 3 bi. Xác suất để được đúng một bi 
xanh là:
 45 2 3 200
 A. . B. . C. . D. .
 91 3 4 273
Câu 79: Một bình chứa 2bi xanh và 3 bi đỏ. Rút ngẫu nhiên 3 bi. Xác suất để được ít nhất một 
bi xanh là.
 1 1 9 4
 A. . B. . C. . D. .
 5 10 10 5
Câu 80: Một hộp chứa 7 bi xanh, 5 bi đỏ, 3 bi vàng. Xác suất để trong lần thứ nhất bốc được một 
bi mà không phải là bi đỏ là:
 1 2 10 11
 A. . B. . C. . D. .
 3 3 21 21
Câu 81: Một chứa 6 bi đỏ, 7 bi xanh. Nếu chọn ngẫu nhiên 5 bi từ hộp này. Thì xác suất đúng 
đến phần trăm để có đúng 2 bi đỏ là:
 A. 0,14. B. 0,41. C. 0,28. D. 0,34.
Câu 82: Một hộp chứa 6 bi xanh, 7 bi đỏ. Nếu chọn ngẫu nhiên 2 bi từ hộp này. Thì xác suất để 
được 2 bi cùng màu là:
 A. 0,46. B. 0,51. C. 0,55. D. 0,64.
Câu 83: Một hộp chứa 3 bi xanh, 2 bi đỏ, 4 bi vàng. Lấy ngẫu nhiên 3 bi. Xác suất để đúng một bi 
đỏ là:
 1 2 1 3
 A. . B. . C. . D. .
 3 5 2 5
Câu 84: Có 3 chiếc hộp. Hộp A chứa 3 bi đỏ, 5 bi trắng. Hộp B chứa 2 bi đỏ, hai bi vàng. Hộp C 
chứa 2 bi đỏ, 3 bi xanh. Lấy ngẫu nhiên một hộp rồi lấy một bi từ hộp đó. Xác suất để được một bi 
đỏ là:
 1 1 2 17
 A. . B. . C. . D. .
 8 6 15 40
Câu 85: Một hộp chứa 3 bi đỏ, 2 bi vàng và 1 bi xanh. Lần lượt lấy ra ba bi và không bỏ lại. Xác 
suất để được bi thứ nhất đỏ, nhì xanh, ba vàng là:
 1 1 1 1
 A. . B. . C. . D. .
 60 20 120 2
Câu 86: Một hộp chứa 3 bi xanh và 2 bi đỏ. Lấy một bi lên xem rồi bỏ vào, rồi lấy một bi khác. 
Xác suất để được cả hai bi đỏ là:
 4 1 2 1
 A. . B. . C. . D. .
 25 25 5 5
Câu 87: Có hai chiếc hộp. Hộp thứ nhất chứa 1 bi xanh, 3 bi vàng. Hộp thứ nhì chứa 2 bi xanh, 1 
bi đỏ. Lấy từ mỗi hộp một bi. Xác suất để được hai bi xanh là:

File đính kèm:

  • docxtrac_nghiem_giai_tich_lop_11_chuong_2_bai_5_xac_suat_co_dap.docx