Bài tập ôn tập Đại số Lớp 11 - Bài 2.2: Hoán vị. Chỉnh hợp. Tổ hợp (Có lời giải)
(Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Sắp xếp năm bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp sao cho bạn An và bạn Dũng không ngồi cạnh nhau?
A. 24. B. 72. C. 12. D. 48.
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập ôn tập Đại số Lớp 11 - Bài 2.2: Hoán vị. Chỉnh hợp. Tổ hợp (Có lời giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài tập ôn tập Đại số Lớp 11 - Bài 2.2: Hoán vị. Chỉnh hợp. Tổ hợp (Có lời giải)

TOÁN 11 HOÁN VỊ - CHỈNH HỢP – TỔ HỢP 1D2-2 Contents Phần A. Câu hỏi .............................................................................................................................................................1 Dạng 1. Bài toán chỉ sử dụng P hoặc C hoặc A ...............................................................................................................1 Dạng 1.1 Chỉ sử dụng P ...............................................................................................................................................1 Dạng 1.1.1 Bài toán đếm số .....................................................................................................................................1 Dạng 1.1.2 Bài toán chọn người (vật) ......................................................................................................................2 Dạng 1.2 Chỉ sử dụng C...............................................................................................................................................3 Dạng 1.2.1 Bài toán đếm số (tập số, tập hợp) ..........................................................................................................3 Dạng 1.2.2 Bài toán chọn người (vật) ......................................................................................................................4 Dạng 1.2.3 Bài toán liên quan đến hình học ............................................................................................................8 Dạng 1.3 Chỉ sử dụng A.............................................................................................................................................11 Dạng 1.3.1 Bài toán đếm số (tập số, tập hợp) ........................................................................................................11 Dạng 1.3.2 Bài toán chọn người (vật) ....................................................................................................................13 Dạng 1.3.3 Bài toán liên quan đến hình học ..........................................................................................................14 Dạng 2. Bài toán kết hợp hoán vị, tổ hợp, chỉnh hợp.....................................................................................................14 Dạng 2.1 Bài toán đếm số (tập số) .............................................................................................................................14 Dạng 2.2 Bài toán chọn người (vật) ...........................................................................................................................15 Dạng 2.3 Bài toán liên quan đến hình học .................................................................................................................16 Dạng 3. Giải phương trình, bất phương trình, hệ liên quan đến hoán vị, chỉnh hợp, tổ hợp ..........................................17 Phần B. Lời giải tham khảo.........................................................................................................................................20 Dạng 1. Bài toán chỉ sử dụng P hoặc C hoặc A .............................................................................................................20 Dạng 1.1 Chỉ sử dụng P .............................................................................................................................................20 Dạng 1.1.1 Bài toán đếm số ...................................................................................................................................20 Dạng 1.1.2 Bài toán chọn người (vật) ....................................................................................................................22 Dạng 1.2 Chỉ sử dụng C.............................................................................................................................................23 Dạng 1.2.1 Bài toán đếm số (tập số, tập hợp) ........................................................................................................23 Dạng 1.2.2 Bài toán chọn người (vật) ....................................................................................................................24 Dạng 1.2.3 Bài toán liên quan đến hình học ..........................................................................................................29 Dạng 1.3 Chỉ sử dụng A.............................................................................................................................................33 Dạng 1.3.1 Bài toán đếm số (tập số, tập hợp) ........................................................................................................33 Dạng 1.3.2 Bài toán chọn người (vật) ....................................................................................................................37 Dạng 1.3.3 Bài toán liên quan đến hình học ..........................................................................................................37 Dạng 2. Bài toán kết hợp hoán vị, tổ hợp, chỉnh hợp.....................................................................................................37 Dạng 2.1 Bài toán đếm số (tập số) .............................................................................................................................37 1 Dạng 2.2 Bài toán chọn người (vật) ........................................................................................................................40 Dạng 2.3 Bài toán liên quan đến hình học .................................................................................................................41 Dạng 3. Giải phương trình, bất phương trình, hệ liên quan đến hoán vị, chỉnh hợp, tổ hợp ..........................................42 Phần A. Câu hỏi Dạng 1. Bài toán chỉ sử dụng P hoặc C hoặc A Dạng 1.1 Chỉ sử dụng P Dạng 1.1.1 Bài toán đếm số Câu 1. (THPT QUẢNG YÊN - QUẢNG NINH - 2018) Từ các chữ số 2,3,4,5,6,7 có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số khác nhau? A. 256 . B. 720 . C. 120. D. 24 . Câu 2. (SỞ GD&ĐT LÀO CAI - 2018) Cho các số 1, 5 , 6 , 7 . Có bao nhiêu số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho. A. 64 . B. 24 . C. 256 . D. 12. Câu 3. (SGD&ĐT BẮC NINH - 2018) Cho A 1,2,3,4. Từ A lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau? A. 32 . B. 24 . C. 256 . D. 18. Câu 4. (THPT LÊ HOÀN - THANH HÓA - LẦN 1 - 2018) Từ các chữ số 1, 2 , 3 , 4 , 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau: A. 120. B. 720 . C. 16. D. 24 . Câu 5. (THPT CHUYÊN VĨNH PHÚC - LẦN 3 - 2018) Từ các số 1, 2 , 3 , 4 , 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau đôi một? A. 60 . B. 120. C. 24 . D. 48 . Câu 6. (THPT CHUYÊN NGỮ - HÀ NỘI - 2018) Cho tập hợp X gồm 10 phần tử. Số các hoán vị của 10 phần tử của tập hợp X là A. 10!. B. 102 . C. 210 . D. 1010 . Câu 7. (Lương Thế Vinh - Kiểm tra giữa HK1 lớp 11 năm 2018 - 2019) Số các số có 6 chữ số khác nhau không bắt đầu bởi 12 được lập từ 1; 2; 3; 4; 5; 6 là A. 720 . B. 966 . C. 696 . D. 669 . Câu 8. (ĐẶNG THÚC HỨA - NGHỆ AN - LẦN 1 - 2018) Từ các chữ số 0 , 2 , 3 , 5 , 6 , 8 có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau trong đó hai chữ số 0 và 5 không đứng cạnh nhau. A. 384 . B. 120. C. 216 . D. 600 . Câu 9. (THPT CHUYÊN LÊ HỒNG PHONG - NAM ĐỊNH - LẦN 2 - 2018) Cho các chữ số 0 , 1, 2 , 3 , 4 , 5 . Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có 4 chữ số và các chữ số đôi một bất kỳ khác nhau. A. 160. B. 156. C. 752 . D. 240 . Câu 10. (KSCL lần 1 lớp 11 Yên Lạc-Vĩnh Phúc-1819) Xếp 6 chữ số 1, 1, 2 , 2 , 3 , 4 thành hàng ngang sao cho hai chữ số giống nhau thì không xếp cạnh nhau. Hỏi có bao nhiêu cách A. 120 cách. B. 96 cách. C. 180 cách. D. 84 cách. 2 Câu 11. (Lương Thế Vinh - Kiểm tra giữa HK1 lớp 11 năm 2018 - 2019) Có bao nhiêu số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ? A. 320 . B. 144. C. 180. D. 60 . Câu 12. (PHAN ĐĂNG LƯU - HUẾ - LẦN 1 - 2018) Từ các chữ số 1, 2 , 3 , 4 , 5 , 6 có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị A. 32 . B. 72 . C. 36 . D. 24 . Câu 13. (THPT CHUYÊN HẠ LONG - LẦN 1 - 2018) Gọi S là tập hợp tất cả các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ các chữ số 5,6,7,8,9. Tính tổng tất cả các số thuộc tâp S. A. 9333420. B. 46666200. C. 9333240. D. 46666240. Dạng 1.1.2 Bài toán chọn người (vật) Câu 14. (THPT HÀ HUY TẬP - HÀ TĨNH - LẦN 1 - 2018) Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc? A. 55 . B. 5!. C. 4!. D. 5 . Câu 15. (THPT HÀM RỒNG - THANH HÓA - 2018) Số cách xếp 5 học sinh ngồi vào một bàn dài là A. 120. B. 24 . C. 5 . D. 1. Câu 16. Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ? 1 1 10 A. P10 . B. C10 . C. A10 . D. C10 . Câu 17. (HKI-Nguyễn Gia Thiều 2018-2019) Ban chấp hành chi đoàn lớp 11D có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm? A. 2 . B. 3 . C. 6 . D. 9 . Câu 18. (LƯƠNG TÀI 2 BẮC NINH LẦN 1-2018-2019) Có tất cả bao nhiêu cách xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách? A. 5! B. 65 C. 6! D. 66 Câu 19. (HKI-Chu Văn An-2017) Trong kỳ thi THPT Quốc gia năm 2017 tại một điểm thi có 5 sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 người đó? A. 120. B. 625. C. 3125 D. 80 . Câu 20. (THPT CHU VĂN AN - HKI - 2018) Trong kì thi THPT Quốc gia năm 2017 tại một Điểm thi có 5 sinh viên tình nguyện được phân công trực hướng dẫn thi sinh ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 người đó? A. 625. B. 3125 . C. 120. D. 80 . Câu 21. (Chuyên Lào Cai Lần 3 2017-2018) Có một con mèo vàng, 1 con mèo đen, 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào 6 cái ghế, mỗi ghế một con. Hỏi có bao nhiêu cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau. A. 720 . B. 120. C. 144. D. 240. Câu 22. (Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Tính số cách sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi sao cho các nữ sinh luôn ngồi cạnh nhau. A. 10!. B. 7! 4!. C. 6! 4!. D. 6! 5!. Câu 23. (HKI – TRIỆU QUANG PHỤC 2018-2019) Có 6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho hai thầy giáo không đứng cạnh nhau? A. 30240 cách. B. 720 cách. C. 362880 cách. D. 1440 cách. Câu 24. (HKI – TRIỆU QUANG PHỤC 2018-2019) Cho hai dãy ghế được xếp như sau: 3 Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng A. 4!.4!.24 . B. 4!.4!. C. 4!.2 . D. 4!.4!.2 . Câu 25. (Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Sắp xếp năm bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp sao cho bạn An và bạn Dũng không ngồi cạnh nhau? A. 24 . B. 72 . C. 12. D. 48 . Câu 26. (THPT HÀ HUY TẬP - HÀ TĨNH - LẦN 1 - 2018) Một nhóm học sinh gồm 4 học sinh nam và 5 học sinh nữ. Hỏi có bao nhiêu cách sắp xếp 9 học sinh trên thành 1 hàng dọc sao cho nam nữ đứng xen kẽ? A. 5760 . B. 2880 . C. 120. D. 362880 . Câu 27. Có 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau? A. 345600 . B. 518400 . C. 725760 . D. 103680. Câu 28. (Lương Thế Vinh - Kiểm tra giữa HK1 lớp 11 năm 2018 - 2019) Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau? A. 5!.8!. B. 5!.7!. C. 2.5!.7!. D. 12!. Câu 29. (Lương Thế Vinh - Kiểm tra giữa HK1 lớp 11 năm 2018 - 2019) Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ? A. 6 . B. 144. C. 720 . D. 72 . Dạng 1.2 Chỉ sử dụng C Dạng 1.2.1 Bài toán đếm số (tập số, tập hợp) Câu 30. (ĐỀ THAM KHẢO BGD & ĐT 2018) Cho tập hợp M có 10 phần tử. Số tập con gồm hai phần từ của M là 2 2 8 2 A. C10 B. 10 C. A10 D. A10 Câu 31. (Yên Định 1 - Thanh Hóa - 2018-2019) Cho tập hợp M có 30 phần tử. Số tập con gồm 5 phần tử của M là 4 5 5 5 A. A30 . B. 30 . C. 30 . D. C30 . Câu 32. (Chuyên ĐBSH lần 1-2018-2019) Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là 7! A. C3 . B. . C. A3 . D. 21. 7 3! 7 Câu 33. (THPT NGUYỄN HUỆ - TT HUẾ - 2018) Cho tập hợp M 0;1;2;3;4;5;6;7;8;9 . Số tập con gồm 3 phần tử của M không có số 0 là: 3 3 3 3 A. A10 . B. A9 . C. C10 . D. C9 . Câu 34. (LIÊN TRƯỜNG - NGHỆ AN - LẦN 2 - 2018) Cho tập hợp M có 30 phần tử. Số tập con gồm 5 phần tử của M là 5 5 5 4 A. C30 . B. A30 . C. 30 . D. A30 . Câu 35. (HKI_L11-NGUYỄN GIA THIỀU - HÀ NỘI 1718) Có bao nhiêu tập con gồm 3 phần tử được lấy ra từ tập A a;b;c;d;e; f ? A. 10 . B. 80 . C. 40 . D. 20 . 4 Câu 36. (KSCL lần 1 lớp 11 Yên Lạc-Vĩnh Phúc-1819) Cho tập M gồm 10 phần tử. Số tập con gồm 4 phần tử của M là 4 4 4 A. 40 . B. A10 . C. C10 . D. 10 . Câu 37. (HKI-Chu Văn An-2017) Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E ? A. 100. B. 80 . C. 45 . D. 90 . Câu 38. (THPT NGUYỄN TRÃI-THANH HOÁ - Lần 1.Năm 2018&2019) Cho tập A gồm 12 phần tử. Số tập con có 4 phần tử của tập A là 8 4 4 A. A12 . B. C12 . C. 4!. D. A12 . Câu 39. (THPT CHU VĂN AN - HKI - 2018) Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E ? A. 100. B. 90 . C. 45 . D. 80 . Câu 40. (THPT CHUYÊN LÊ HỒNG PHONG - NAM ĐỊNH - LẦN 2 - 2018) Có bao nhiêu số tự nhiên có ba chữ số dạng abc với a , b , c 0;1;2;3;4;5;6 sao cho a b c . A. 120. B. 30 . C. 40 . D. 20 . Câu 41. (TOÁN HỌC TUỔI TRẺ SỐ 5) Từ các chữ số 2 , 3 , 4 lập được bao nhiêu số tự nhiên có 9 chữ số, trong đó chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số 4 có mặt 4 lần? A. 1260. B. 40320 . C. 120. D. 1728. Câu 42. (CTN - LẦN 1 - 2018) Từ các chữ số 1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 có thể lập được bao nhiêu số tự nhiên có hai chữ số mà chữ số hàng đơn vị lớn hơn chữ số hàng chục? A. 48 . B. 72 . C. 54 . D. 36 . Câu 43. (ĐỀ THI GIỮA KỲ II YÊN PHONG 1 - 2018) Từ các chữ số 0 ; 1; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 , hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau mà chữ số đứng sau lớn hơn chữ số đằng trước? A. 4536 . B. 2513. C. 126. D. 3913 . Dạng 1.2.2 Bài toán chọn người (vật) Câu 44. (Mã 102 - BGD - 2019) Số cách chọn 2 học sinh từ 5 học sinh là 5 2 2 2 A. 2 . B. C5 . C. A5 . D. 5 . Câu 45. (Mã 103 - BGD - 2019) Số cách chọn 2 học sinh từ 6 học sinh là 2 2 6 2 A. A6 . B. C6 . C. 2 . D. 6 . Câu 46. (Mã đề 101 - BGD - 2019) Số cách chọn 2 học sinh từ 7 học sinh là 7 2 2 2 A. 2 . B. A7 . C. C 7 . D. 7 . Câu 47. (Mã đề 102 BGD&ĐT NĂM 2018) Có bao nhiêu cách chọn hai học sinh từ một nhóm 38 học sinh? 38 2 2 2 A. 2 B. C38 C. 38 D. A38 Câu 48. (Mã đề 101-THPTQG 2018) Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm3 4 học sinh? 34 2 2 2 A. 2 . B. A34 . C. 34 . D. C34 . Câu 49. (THPT QUỐC GIA 2018 - MÃ ĐỀ 102) Có bao nhiêu cách chọn hai học sinh từ một nhóm 38 học sinh? 2 38 2 2 A. A38 . B. 2 . C. C38 . D. 38 . Câu 50. (ĐỀ THAM KHẢO BGD & ĐT 2018) Cho tập hợp M có 10 phần tử. Số tập con gồm hai phần từ của M là 2 2 8 2 A. C10 B. 10 C. A10 D. A10 5 Câu 51. (THPT LÊ XOAY - LẦN 3 - 2018) Một lớp có 48 học sinh. Số cách chọn 2 học sinh trực nhật là A. 2256 . B. 2304 . C. 1128. D. 96 . Câu 52. (THPT THUẬN THÀNH - BẮC NINH - 2018) Cần phân công ba bạn từ một tổ có 10 bạn để làm trực nhật. Hỏi có bao nhiêu cách phân công khác nhau? A. 720 . B. 103 . C. 120. D. 210 . Câu 53. (SỞ GD&ĐT PHÚ THỌ - 2018) Một hộp đựng hai viên bi màu vàng và ba viên bi màu đỏ. Có bao nhiêu cách lấy ra hai viên bi trong hộp? A. 10. B. 20 . C. 5 . D. 6 . Câu 54. (TRƯỜNG THPT THANH THỦY 2018 -2019) Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh để tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn như trên? A. 2300. B. 59280. C. 455 D. 9880. Câu 55. (HKI-Chu Văn An-2017) Một hộp đựng 50 viên bi gồm 10 viên bi màu trắng, 25 viên bi màu đỏ và 15 viên bi màu xanh. Có bao nhiêu cách chọn 8 viên bi trong hộp đó mà không có viên bi nào màu xanh? 8 8 8 8 8 8 A. C50 . B. C10 C25 . C. C35 . D. C50 C15 . Câu 56. (THPT Yên Dũng 3 - Bắc Giang lần 1- 18-19) Số cách phân 3 học sinh trong 12 học sinh đi lao động là 3 3 A. P 12 . B. 36 . C. A12 . D. C12 . Câu 57. (THPT CHUYÊN QUỐC HỌC HUẾ - 2018) Có tất cả bao nhiêu cách chia 10 người thành hai nhóm, một nhóm có 6 người và một nhóm có 4 người? A. 210 . B. 120. C. 100. D. 140. Câu 58. (THPT PHAN ĐÌNH PHÙNG - HÀ TĨNH - LẦN 1 - 2018) Số cách chia 12 phần quà cho 3 bạn sao cho ai cũng có ít nhất hai phần quà là A. 28 . B. 36 . C. 56 . D. 72 . Câu 59. Từ một nhóm có 10 học sinh nam và 8 học sinh nữ, có bao nhiêu cách chọn ra 5 học sinh trong đó có 3 học sinh nam và 2 học sinh nữ? 3 2 3 2 3 2 3 2 A. C10C8 . B. A10 A8 . C. A10 A8 . D. C10 C8 . Câu 60. (Yên Định 1 - Thanh Hóa - 2018-2019) Một nhóm có 6 học sinh gồm 4 nam và 2 nữ. Hỏi có bao nhiêu cách chọn ra 3 học sinh trong đó có cả nam và nữ. A. 6 . B. 16. C. 20 . D. 32 . Câu 61. (Chuyên ĐBSH lần 1-2018-2019) Từ một tập gồm 10 câu hỏi, trong đó có 4 câu lí thuyết và 6 câu bài tập, người ta tạo thành các đề thi. Biết rằng một đề thi phải gồm 3 câu hỏi trong đó có ít nhất một câu lí thuyết và 1 câu bài tập. Hỏi có thể tạo được bao nhiêu đề khác nhau. A. 100. B. 36 . C. 96 . D. 60 . Câu 62. (Chuyên Thái Bình lần 2 - 2018-2019) Một đội xây dựng gồm 3 kĩ sư, 7 công nhân. Có bao nhiêu cách lập từ đó một tổ công tác 5 người gồm 1 kĩ sư làm tổ trưởng, 1 công nhân làm tổ phó và 3 công nhân làm tổ viên: A. 420 cách. B. 120 cách. C. 252 cách. D. 360 cách. Câu 63. (HỌC KỲ I ĐAN PHƯỢNG HÀ NỘI 2017 - 2018) Cô giáo chia 4 quả táo,3 quả cam và 2 quả chuối cho 9 cháu (mỗi cháu 1 quả). Hỏi có bao nhiêu cách chia khác nhau? A. 120. B. 1260. C. 9 . D. 24 . Câu 64. (HỌC KỲ I ĐAN PHƯỢNG HÀ NỘI 2017 - 2018) Tại một buổi lễ có 13 cặp vợ chồng tham dự, mỗi ông bắt tay với một người trừ vợ mình, các bà không ai bắt tay nhau. Hỏi có bao nhiêu cái bắt tay. 6 A. 234 . B. 312 . C. 78. D. 185. Câu 65. (HKI_L11-NGUYỄN GIA THIỀU - HÀ NỘI 1718) Một nhóm có 5 nam và 3 nữ. Chọn ra 3 người trong đó có ít nhất 1 nữ. Số cách chọn là A. 48 . B. 46 . C. 15. D. 64 . Câu 66. (HKI-Chuyên Hà Nội - Amsterdam 2017-2018) Một lớp học có 30 học sinh gồm 20 nam, 10 nữ. Hỏi có bao nhiêu cách chọn một nhóm 3 học sinh sao cho nhóm đó có ít nhất 1 học sinh là nữ. A. 1140. B. 2920 . C. 1900. D. 900 . Câu 67. (Lương Thế Vinh - Kiểm tra giữa HK1 lớp 11 năm 2018 - 2019) Một hộp chứa 20 quả cầu khác nhau trong đó có 12 quả đỏ, 8 quả xanh. Hỏi có bao nhiêu cách lấy được 3 quả trong đó có ít nhất 1 quả xanh? A. Đáp án khác. B. 220 . C. 900 . D. 920 . Câu 68. (THPT CHUYÊN THÁI BÌNH - LẦN 4 - 2018) Từ một tập gồm 10 câu hỏi, trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta cấu tạo thành các đề thi. Biết rằng trong một đề thi phải gồm 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu hỏi bài tập. Hỏi có thể tạo được bao nhiêu đề như trên? A. 60 . B. 96 . C. 36 . D. 100. Câu 69. (THPT THANH MIỆN I - HẢI DƯƠNG - LẦN 1 - 2018) Ngân hàng đề thi gồm1 5 câu hỏi trắc nghiệm khác nhau và 8 câu hỏi tự luận khác nhau. Hỏi có thể lập được bao nhiêu đề thi sao cho mỗi đề thi gồm 10 câu hỏi trắc nghiệm khác nhau và 4 câu hỏi tự luận khác nhau. 10 4 10 4 10 4 10 4 A. C15 .C8 . B. C15 C8 . C. A15 .A8 . D. A15 A8 . Câu 70. (HỒNG BÀNG - HẢI PHÒNG - LẦN 1 - 2018) Một lớp có 40 học sinh gồm 25 nam và 15 nữ. Giáo viên chủ nhiệm muốn chọn 4 em trực cờ đỏ. Hỏi có bao nhiêu cách chọn nếu ít nhất phải có một nam? 4 4 4 1 3 4 4 A. C40 C15 (cách). B. C25 (cách). C. C25C15 (cách). D. C40 C15 (cách). Câu 71. (THPT LỤC NGẠN - LẦN 1 - 2018) Trong một buổi khiêu vũ có 20 nam và 18 nữ. Hỏi có bao nhiêu cách chọn ra một đôi nam nữ để khiêu vũ? 2 2 2 1 1 1 A. C38 . B. A38 . C. C20C18 . D. C20C18 . Câu 72. (THPT THẠCH THANH 2 - THANH HÓA - LẦN 1 - 2018) Một nhóm gồm6 học sinh nam và 7 học sinh nữ. Hỏi có bao nhiêu cách chọn từ đó ra 3 học sinh tham gia văn nghệ sao cho luôn có ít nhất một học sinh nam. A. 245 . B. 3480 . C. 336 . D. 251. Câu 73. (THPT LỤC NGẠN - LẦN 1 - 2018) Có 10 quyển sách toán giống nhau, 11 quyển sách lý giống nhau và 9 quyển sách hóa giống nhau. Có bao nhiêu cách trao giải thưởng cho 15 học sinh có kết quả thi cao nhất của khối A trong kì thi thử lần hai của trường THPT Lục Ngạn số 1, biết mỗi phần thưởng là hai quyển sách khác loại? 7 3 6 4 3 4 2 A. C15C9 . B. C15C9 . C. C15C9 . D. C30 . Câu 74. (THPT THUẬN THÀNH 1) Có 6 học sinh lớp 12, 5 học sinh lớp 11 và 4 học sinh lớp 10. Số cách chọn ra ra 4 học sinh có đủ cả ba khối là A. 1365. B. 720. C. 280. D. 120. Câu 75. (KSCL lần 1 lớp 11 Yên Lạc-Vĩnh Phúc-1819) Đội ca khúc chính trị của trường THPT Yên lạc 2 gồm có 4 học sinh khối 12, có 3 học sinh khối 11 và 2 học sinh khối 10. Chọn ngẫu nhiên 5 học sinh để biểu diễn tiết mục văn nghệ chào mừng ngày 20 /11. Hỏi có bao nhiêu cách chọn sao cho khối nào cũng có học sinh được chọn. A. 102. B. 126. C. 100. D. 98. 7 Câu 76. (TRƯỜNG THPT THANH THỦY 2018 -2019) Một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Chọn ngẫu nhiên 5 viên bi sao cho có đủ cả ba màu. Số cách chọn là: A. 840 B. 3843 C. 2170 D. 3003 Câu 77. (HKI_L11-NGUYỄN GIA THIỀU - HÀ NỘI 1718) Từ 20 câu trắc nghiệm gồm 9 câu dễ, 7 câu trung bình và 4 câu khó.người ta chọn ra 10 câu để làm đề kiểm tra sao cho phải có đủ 3 loại dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra? A. 176451. B. 176465. C. 176415. D. 6415. Câu 78. (DHSP HÀ NỘI HKI 2017-2018) Đội thanh niên xung kích của một trường trung học phổ thông có 10 người, gồm 4 học sinh lớp A , 3 học sinh lớp B , 3 học sinh lớp C . Hỏi có bao nhiêu cách chọn ra 5 học sinh đi làm nhiệm vụ mà số học sinh lớp B bằng số học sinh lớp C ? A. 36. B. 72. C. 144. D. 108. Câu 79. (Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Một lớp học có 30 học sinh nam và 15 học sinh nữ. Có bao nhiêu cách lập ra một đội văn nghệ gồm 6 người, trong đó có ít nhất 4 nam? A. 412.803. B. 2.783.638. C. 5.608.890. D. 763.806. Câu 80. (Chuyên Nguyễn Huệ - Hà Nội -HK1 2018 - 2019) Một bó hoa có 14 bông hoa gồm: 3 bông màu hồng, 5 bông màu xanh còn lại là màu vàng. Hỏi có bao nhiêu cách chọn 7 bông trong đó phải có đủ ba màu? A. 3058 . B. 3060 . C. 3432 . D. 129. Câu 81. (ĐỀ KT NĂNG LỰC GV THUẬN THÀNH 1 BẮC NINH 2018-2019) Một hộp đựng 26 tấm thẻ được đánh số từ 1 đến 26 . Bạn Hải rút ngẫu nhiên cùng lúc 3 tấm thẻ. Hỏi có bao nhiêu cách rút sao cho bất kì hai trong ba tấm thẻ lấy ra đó có hai số tương ứng ghi trên hai tấm thẻ luôn hơn kém nhau ít nhất hai đơn vị. A. 1771. B. 1350. C. 1768. D. 2024 . Câu 82. (HKI-Chu Văn An-2017) Một hộp chứa 16 quả cầu gồm sáu quả cầu xanh đánh số từ 1 đến 6 , năm quả cầu đỏ đánh số từ 1 đến 5 và năm quả cầu vàng đánh số từ 1 đến 5 . Hỏi có bao nhiêu cách lấy ra từ hộp đó ba quả cầu vừa khác màu vừa khác số? A. 60 . B. 72 . C. 150. D. 80 . Câu 83. (THPT Yên Mỹ Hưng Yên lần 1 - 2019) Trong hộp có 5 quả cầu đỏ và 7 quả cầu xanh kích thước giống nhau. Lấy ngẫu nhiên 5 quả cầu từ hộp. Hỏi có bao nhiêu khả năng lấy được số quả cầu đỏ nhiều hơn số quả cầu xanh. A. 245 . B. 3480 . C. 246 . D. 3360 . Câu 84. (SGD&ĐT ĐỒNG THÁP - 2018) Một trường cấp 3 của tỉnh Đồng Tháp có 8 giáo viên Toán gồm có 3 nữ và 5 nam, giáo viên Vật lý thì có 4 giáo viên nam. Hỏi có bao nhiêu cách chọn ra một đoàn thanh tra công tác ôn thi THPTQG gồm 3 người có đủ 2 môn Toán và Vật lý và phải có giáo viên nam và giáo viên nữ trong đoàn? A. 60 (cách). B. 120 (cách). C. 12960 (cách). D. 90 (cách). Câu 85. (THPT CHUYÊN QUANG TRUNG - BP - LẦN 1 - 2018) Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ để biễu diễn trong lễ bế giảng. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn? A. 120. B. 98 . C. 150. D. 360 . Câu 86. (THPT CHUYÊN HÙNG VƯƠNG - PHÚ THỌ - LẦN 1 - 2018) Trong kho đèn trang trí đang còn 5 bóng đèn loại I, 7 bóng đèn loại II, các bóng đèn đều khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kỳ. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II? A. 246 . B. 3480 . C. 245 . D. 3360 . 8 Câu 87. (THPT HOA LƯ A - LẦN 1 - 2018) Có bao nhiêu cách chia 8 đồ vật khác nhau cho 3 người sao cho có một người được 2 đồ vật và hai người còn lại mỗi người được ba đồ vật? 2 3 2 3 2 3 2 3 A. 3!C8 C6 . B. C8 C6 . C. A8 A6 . D. 3C8 C6 . Câu 88. (THPT CHUYÊN HOÀNG VĂN THỤ - HÒA BÌNH - 2018) Một tổ có 5 học sinh nữ và 6 học sinh nam. Số cách chọn ngẫu nhiên 5 học sinh của tổ trong đó có cả học sinh nam và học sinh nữ là? A. 545 . B. 462 . C. 455. D. 456 . Câu 89. (LÊ QUÝ ĐÔN - QUẢNG TRỊ - LẦN 1 - 2018) Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh? A. 4249 . B. 4250 . C. 5005 . D. 805 . Câu 90. (THPT LƯƠNG VĂN TỤY - NINH BÌNH - LẦN 1 - 2018) Bình A chứa 3 quả cầu xanh, 4 quả cầu đỏ và 5 quả cầu trắng. Bình B chứa 4 quả cầu xanh, 3 quả cầu đỏ và 6 quả cầu trắng. Bình C chứa 5 quả cầu xanh, 5 quả cầu đỏ và 2 quả cầu trắng. Từ mỗi bình lấy ra một quả cầu. Có bao nhiêu cách lấy để cuối cùng được 3 quả có màu giống nhau. A. 180. B. 150. C. 120. D. 60 . Câu 91. (THPT HÀ HUY TẬP - HÀ TĨNH - LẦN 1 - 2018) Tổ 1 lớp 11A có 6 học sinh nam và 5 học sinh nữ. Giáo viên chủ nhiệm cần chọn ra 4 học sinh của tổ 1 để lao động vệ sinh cùng cả trường. Hỏi có bao nhiêu cách chọn 4 học sinh trong đó có ít nhất một học sinh nam? A. 600 . B. 25 . C. 325 . D. 30 . Câu 92. (CỤM CHUYÊN MÔN 4 - HẢI PHÒNG - LẦN 1 - 2018) Một tổ có 5 bạn học sinh nam và 6 bạn học sinh nữ.Giáo viên chọn ngẫu nhiên 3 em đi trực nhật.Có bao nhiêu cách chọn 3 học sinh để có cả nam và nữ? A. 325 . B. 415 . C. 810 . D. 135. Dạng 1.2.3 Bài toán liên quan đến hình học Câu 93. (HỒNG BÀNG - HẢI PHÒNG - LẦN 1 - 2018) Trong một đa giác lồi n cạnh, số đường chéo của đa giác là. 2 2 2 2 A. Cn . B. An . C. An n . D. Cn n . Câu 94. (SỞ GD&ĐT YÊN BÁI - 2018) Cho một đa giác đều có 10 cạnh. Có bao nhiêu tam giác có 3 đỉnh thuộc các đỉnh của đa giác đã cho. A. 720 . B. 35 . C. 120. D. 240 . Câu 95. (THPT CHUYÊN PHAN BỘI CHÂU - NGHỆ AN - LẦN 2 - 2018) Cho 8 điểm, trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 8 điểm trên ? A. 336 . B. 56 . C. 168. D. 84 . Câu 96. (SGD THANH HÓA - LẦN 1 - 2018) Số đường chéo của đa giác đều có 20 cạnh là bao nhiêu? A. 170. B. 190. C. 360 . D. 380 . Câu 97. (THPT CHUYÊN HÙNG VƯƠNG - PHÚ THỌ - LẦN 4 - 2018) Lục giác đều ABCDEF có bao nhiêu đường chéo A. 15. B. 5 . C. 9 . D. 24 . Câu 98. (QUẢNG XƯƠNG - THANH HÓA - LẦN 1 - 2018) Số giao điểm tối đa của 10 đường thẳng phân biệt là A. 50 . B. 100. C. 120. D. 45 . Câu 99. (THPT CHUYÊN LAM SƠN - THANH HÓA - 2018) Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 điểm đều thuộc P là 9 3 3 3 7 A. 10 . B. A10 . C. C10 . D. A10 . Câu 100. (THPT CHUYÊN AN GIANG - 2018) Cho đa giác đều có 20 đỉnh. Số tam giác được tạo nên từ các đỉnh này là 3 3 3 3 A. A20 . B. 3!C20 . C. 10 . D. C20 . Câu 101. (HKI-Nguyễn Gia Thiều 2018-2019) Cho 20 điểm phân biệt cùng nằm trên một đường tròn. Hỏi có bao nhiêu tam giác được tạo thành từ các điểm này? A. 8000. B. 6480. C. 1140. D. 600. Câu 102. (Lương Thế Vinh - Kiểm tra giữa HK1 lớp 11 năm 2018 - 2019) Trong không gian cho 20 điểm trong đó không có 4 điểm nào cùng nằm trong một mặt phẳng. Hỏi có bao nhiêu cách tạo mặt phẳng từ 3 điểm trong 20 điểm trên? A. 190. B. 6840 . C. 380 . D. 1140. Câu 103. (NGÔ GIA TỰ_VĨNH PHÚC_LẦN 1_1819) Trên đường tròn tâm O cho 12 điểm phân biệt. Từ các điểm đã cho có thể tạo được bao nhiêu tứ giác nội tiếp đường tròn tâm O? 4 4 A. C12 . B. 3. C. 4!. D. A12 . Câu 104. (Lương Thế Vinh - Hà Nội - Lần 1 - 2018-2019) Cho đa giác đều có 2018 đỉnh. Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho? 4 4 2 2 A. C2018 . B. C1009 . C. C2018 . D. C1009 . Câu 105. (DHSP HÀ NỘI HKI 2017-2018) Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho? 3 4 3 3 A. 6 . B. 3 . C. A6 . D. C6 . Câu 106. (Lương Thế Vinh - Kiểm tra giữa HK1 lớp 11 năm 2018 - 2019) Có hai đường thẳng song song d và d . Trên d lấy 15 điểm phân biệt, trên d lấy 9 điểm phân biệt. Hỏi số tam giác có 3 đỉnh là 3 trong 24 điểm trên là bao nhiêu? A. 1485. B. 540 . C. 1548. D. 950 . Câu 107. (Lương Thế Vinh - Kiểm tra giữa HK1 lớp 11 năm 2018 - 2019) Cho đa giác đều 36 đỉnh. Hỏi có bao nhiêu hình chữ nhật có đỉnh là 4 trong 36 đỉnh của đa giác đều? A. 306 . B. 153. C. 9 . D. 58905 . Câu 108. (NGÔ GIA TỰ LẦN 1_2018-2019) Trên đường tròn tâm O cho 12 điểm phân biệt. Từ các điểm đã cho có thể tạo được bao nhiêu tứ giác nội tiếp đường tròn tâm O ? 4 4 A. C12 . B. 3 . C. 4!. D. A12 . Câu 109. (THPT TRIỆU THỊ TRINH - LẦN 1 - 2018) Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 lấy 5 điểm phân biệt, trên d2 lấy 7 điểm phân biệt. Hỏi có bao nhiêu tam giác mà các đỉnh của nó được lấy từ các điểm trên hai đường thẳng d1 và d2 . A. 220 . B. 175. C. 1320. D. 7350 . Câu 110. (KSCL lần 1 lớp 11 Yên Lạc-Vĩnh Phúc-1819) Cho hình vuông ABCD . Trên cạnh AB , BC , CD , DA lần lượt lấy 1, 2 , 3 và n điểm phân biệt n 3 n ¥ khác A , B , C , D . Tìm n biết số tam giác lấy từ n 6 điểm trên là 439 . A. n 20. B. n 12. C. n 8. D. n 10. Câu 111. (ĐỀ THI THỬ ĐỒNG ĐẬU-VĨNH PHÚC LẦN 01 - 2018 – 2019) Cho một đa giác lồi (H) có 10 cạnh. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó là ba đỉnh của (H), nhưng ba cạnh không phải ba cạnh của (H)? A. 40. B. 100. C. 60. D. 50. 10
File đính kèm:
bai_tap_on_tap_dai_so_lop_11_bai_2_2_hoan_vi_chinh_hop_to_ho.docx